Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Biosorbent
2.2. Preparation of the Zn2+ and Ni2+ Aqueous Solutions
2.3. Biosorbent Characterization
2.4. Single and Binary Metal Biosorption Studies
2.5. Biosorption Equilibrium Modeling of Zn2+ and/or Ni2+ Ions onto CS
2.6. Statistical Analyses and Determination of the Biosorption Isotherm Parameters
2.7. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)
2.8. Scanning Electron Microscopy Combined with Energy Dispersive X-ray Spectroscopy (SEM-EDX)
2.9. X-ray Fluorescence (XRF) Spectroscopy
2.10. Confocal Laser Scanning Microscopy (CLSM)
3. Results and Discussion
3.1. Characterization of CS
3.2. Effect of the Metal Solution pH on the Single and Binary Biosorption of Zn2+ and Ni2+ Ions
3.3. Metal Biosorption Isotherms
3.3.1. Monometallic Systems
3.3.2. Bimetallic Systems
3.4. DRIFTS Studies
Referenced Frequency (cm−1) | Functional Groups Involved | Native CS | Zn2+-Loaded CS | Ni2+-Loaded CS | Zn2++Ni2+-Loaded CS | Reference |
---|---|---|---|---|---|---|
Frequency in This Work (cm−1) | ||||||
3600–2600 | OH, CH and NH stretching vibration | 3600–2600 | 3600–2600 | 3600–2600 | 3600–2600 | [62] |
2877 | CH stretching in chitin ring | ND | 2874 | 2874 | 2874 | [61] |
1800 | C=O stretching vibration of CO32- | 1791 | 1792 | 1793 | 1794 | [60] |
1740 | C=O stretching vibration of carboxylic or ester group of fatty acids | 1732 | 1731 | 1733 | ND | [63] |
1680–1650 | C=O stretching of amide I of chitin and proteins | 1669 | 1669 | 1670 | 1669 | [62] |
1560–1530 | N–H bending and C–N stretching of amide II of chitin and proteins | 1557 | 1541 | 1541 | 1564 | [62] |
1383 | CH deformation in amide II | ND | 1374 | 1396 | ND | [64] |
1320 | C-N stretching vibration of amide III | ND | 1318 | 1339 | ND | [65] |
1260 | C-O stretching of COOH | ND | 1255 | 1275 | 1260 | [52,65] |
1074 | Stretching vibrations of C–O on the structure of the chitin ring | 1077 | 1115 | 1043 | 1116 | [61] |
3.5. EDX Analysis
3.6. XRF Analysis
3.7. CLSM Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morales-Barrera, L.; Flores-Ortiz, C.M.; Cristiani-Urbina, E. Single and binary equilibrium studies for Ni2+ and Zn2+ biosorption onto Lemna gibba from aqueous solutions. Processes 2020, 8, 1089. [Google Scholar] [CrossRef]
- King, P.; Anuradha, K.; Beena Lahari, S.B.; Prasanna Kumar, Y.; Prasad, V.S.R.K. Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetic studies. J. Hazard. Mater. 2008, 152, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, A. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J. Hazard. Mater. 2007, 147, 518–523. [Google Scholar] [CrossRef]
- Baig, K.S.; Doan, H.D.; Wu, J. Multicomponent isotherms for biosorption of Ni2+ and Zn2+. Desalination 2009, 249, 429–439. [Google Scholar] [CrossRef]
- Lu, S.; Gibb, S.W.; Cochrane, E. Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent. J. Hazard. Mater. 2007, 149, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.K.; Choubey, S.; Verma, Y.; Pandey, M.; Kalyan-Kamal, S.S.; Chandrashekhar, K. Biosorptive removal of Ni(II) from wastewater and industrial effluent. Int. J. Environ. Res. Public Health 2007, 4, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Subbaiah, M.V.; Vijaya, Y.; Kumar, N.S.; Redddy, A.S.; Abburi, K. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies. Colloids Surf. B Biointerfaces 2009, 74, 260–265. [Google Scholar] [CrossRef]
- Savolainen, H. Biochemical and clinical aspects of nickel toxicity. Environ. Health Rev. 1996, 11, 167–173. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Zinc in Drinking Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/03.04/17; World Health Organization: Geneva, Switzerland, 2003.
- World Health Organization (WHO). Nickel in Drinking Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/05.08/55; World Health Organization: Geneva, Switzerland, 2005.
- Kurniawan, T.A.; Chan, G.Y.Z.; Lo, W.-H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 2007, 145, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rodríguez, A.; Reyes-Ledezma, J.L.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E.; Morales-Barrera, L. Cyclic biosorption and desorption of acid red 27 onto Eichhornia crassipes leaves. Rev. Mex. Ing. Quim. 2018, 17, 1121–1134. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, A.; Morales-Barrera, L.; Cristiani-Urbina, E. Continuous biosorption of acid red 27 azo dye by Eichhornia crassipes leaves in a packed-bed column. Sci. Rep. 2021, 11, 18413. [Google Scholar] [CrossRef] [PubMed]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indraswati, N.; Ismadju, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl. Microbiol. Biotechnol. 2001, 55, 379–382. [Google Scholar] [CrossRef]
- Aksu, Z.; Dönmez, G. Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. J. Hazard. Mater. 2006, 41, 860–868. [Google Scholar] [CrossRef]
- Luna, A.S.; Costa, A.L.H.; da Costa, A.C.A.; Henriques, C.A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresour. Technol. 2010, 101, 5104–5111. [Google Scholar] [CrossRef]
- Oliveira, E.A.; Montanher, S.F.; Andrade, A.D.; Nóbrega, J.A.; Rollemberg, M.C. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 2005, 40, 3485–3490. [Google Scholar] [CrossRef]
- Monteiro, R.J.R.; Lopes, C.B.; Rocha, L.S.; Coelho, J.P.; Duarte, A.C.; Pereira, E. Sustainable approach for recycling seafoods wastes for the removal of priority hazardous substances (Hg and Cd) from water. J. Environ. Chem. Eng. 2016, 4, 1199–1208. [Google Scholar] [CrossRef]
- Kim, D.S. The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresour. Technol. 2003, 87, 355–357. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 2006, 133, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Volesky, B. Biosorption of chromate and vanadate species with waste crab shells. Hydrometallurgy 2006, 84, 28–36. [Google Scholar]
- Dahiya, S.; Tripathi, R.M.; Hegde, A.G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresour. Technol. 2008, 99, 179–187. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Winnie, H.Y.N.; Balasubramanian, R. Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. Desalination 2011, 266, 195–200. [Google Scholar] [CrossRef]
- Murugesan, S.; Rajiv, S.; Thanapalan, M. Optimization of process variables for a biosorption of nickel(II) using response surface method. Korean J. Chem. Eng. 2009, 26, 364–370. [Google Scholar] [CrossRef]
- Morales-Barrera, L. Estudio de la Remoción de Metales Pesados de Soluciones Acuosas por Materiales Biológicos. Ph.D. Thesis, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico, 2012. [Google Scholar]
- Hach Company. Hach Water Analysis Handbook; Hach Company: Hach, Loveland, 2008. [Google Scholar]
- Gupta, V.K.; Suhas; Nayak, A.; Agarwal, S.; Chaudhary, M.; Tyagi, I. Removal of Ni(II) ions from water using scrap tire. J. Mol. Liq. 2014, 190, 215–222. [Google Scholar] [CrossRef]
- Vaguetti, J.C.P.; Lima, E.C.; Royer, B.; Brasil, J.L.; da Cunha, B.M.; Simon, N.M.; Cardoso, N.F.; Zapata-Noreña, C.P. Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution—Kinetics and equilibrium study. Biochem. Eng. J. 2008, 42, 67–76. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, U., Jr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef]
- Aksu, Z.; Balibek, E. Chromium (VI) biosorption by dried Rhizopus arrhizus: Effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J. Hazard. Mater. 2007, 145, 210–220. [Google Scholar] [CrossRef]
- Mckay, G.; Porter, J.F. A comparison of Langmuir based models for predicting multicomponent metal ion equilibrium sorption isotherms on peat. Trans. IChemE 1997, 75, 171–180. [Google Scholar] [CrossRef]
- Apiratikul, R.; Pavasant, P. Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera. Chem. Eng. J. 2006, 119, 135–145. [Google Scholar] [CrossRef]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chem. Eng. J. 2006, 117, 79–91. [Google Scholar] [CrossRef]
- Yesuf, J.N.; DeVantier, B.A.; Chevalier, L.R. Bisolute equilibrium studies for the sorption of basic dyes on a GAC from almond shells: A nonlinear approach. Water Air Soil Pollut. 2008, 8, 387–393. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal sorption by algal biomass: From batch to continuous system. Algal Res. 2016, 18, 95–109. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, T.; Zen, G.-M.; Li, X.; Tong, Q.; Ye, F.; Zhou, M.; Xu, W.-H.; Huang, Y.-E. Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger. Trans. Nonferrous Met. Soc. China 2006, 16, 681–686. [Google Scholar] [CrossRef]
- Salam, O.E.A.; Reiad, N.A.; Elshafei, M.M. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J. Adv. Res. 2011, 2, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Saygideger, S.; Gülnaz, O.; Istifli, E.S.; Yucel, N. Adsorption of Cd(II), Cu(II), and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment. J. Hazard. Mater. 2005, 126, 96–104. [Google Scholar] [CrossRef]
- Aranda-García, E.; Cristiani-Urbina, E. Kinetic, equilibrium, and thermodynamic analyses of Ni(II) biosorption from aqueous solution by acorn shell of Quercus crassipes. Water Air Soil Pollut. 2018, 229, 119. [Google Scholar] [CrossRef]
- Yadav, M.; Das, M.; Savani, C.; Thakore, S.; Jadeja, R. Maleic anhydride cross-linked β-cyclodextrin-conjugated magnetic nanoadsorbent: An ecofriendly approach for simultaneous adsorption of hydrophilic and hydrophobic dyes. ACS Omega 2019, 4, 11993–12003. [Google Scholar] [CrossRef] [Green Version]
- Aranda-García, E.; Cristiani-Urbina, E. Hexavalent chromium removal and total chromium biosorption from aqueous solution by Quercus crassipes acorn shell in a continuous up-flow fixed-bed column: Influencing parameters, kinetics, and mechanism. PLoS ONE 2020, 15, e0227953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3, 3973–3993. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. J. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review. Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Nethaji, S.; Sivasamy, A.; Mandal, A.B. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Technol. 2013, 10, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Flores-Garnica, J.G.; Morales-Barrera, L.; Pineda-Camacho, G.; Cristiani-Urbina, E. Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. Bioresour. Technol. 2013, 136, 635–643. [Google Scholar] [CrossRef]
- Quintelas, C.; Rocha, Z.; Silva, B.; Fonseca, B.; Figueiredo, H.; Tavares, T. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 2009, 149, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Şengil, İ.A.; Özacar, M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J. Hazard. Mater. 2009, 166, 1488–1494. [Google Scholar] [CrossRef]
- Pipíška, M.; Horník, M.; Vrtoch, L.; Augustín, J.; Lesný, J. Biosorption of Zn and Co ions by Evernia prunastri from single and binary metal solutions. Chem. Ecol. 2008, 24, 181–190. [Google Scholar] [CrossRef]
- Kaduková, J.; Horváthová, H. Biosorption of copper, zinc and nickel from multi-ions solutions. Nova Biotechnol. Chim. 2012, 11, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Bolat, Y.; Bilgin, S.; Günlü, A.; Izci, L.; Koca, S.B.; Çetinkaya, S.; Koca, H.H. Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell. Pak. Vet. J. 2012, 30, 227–231. [Google Scholar]
- Youn, D.K.; No, H.K.; Prinyawiwatkul, W. Physicochemical and functional properties of chitosans prepared from shells of crabs harvested in three different years. Carbohydr. Polym. 2009, 78, 41–45. [Google Scholar] [CrossRef]
- Shahidi, F.; Synowiecki, J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 1992, 39, 1527–1532. [Google Scholar] [CrossRef]
- Naczk, M.; Williams, J.; Brennan, K.; Liyanapathirana, C.; Shahidi, F. Compositional characteristics of green crab (Carcinus maenas). Food Chem. 2004, 88, 429–434. [Google Scholar] [CrossRef]
- Heredia, A.; Aguilar-Franco, M.; Magaña, C.; Flores, C.; Piña, C.; Velázquez, R.; Schäffer, T.E.; Bucio, L.; Basiuk, V.A. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell. Mater. Sci. Eng. C 2007, 27, 8–13. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvão, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Naja, G.; Mustin, C.; Volesky, B.; Berthelin, J. A high-resolution titrator: A new approach to studying binding sites of microbial biosorbents. Water Res. 2005, 39, 579–588. [Google Scholar] [CrossRef]
- Beil, S.; Schamberger, A.; Naumann, W.; Machill, S.; van Pée, K.-H. Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carb. Polym. 2012, 87, 117–122. [Google Scholar] [CrossRef]
- Mungasavalli, D.P.; Viraraghavan, T.; Jin, Y.-C. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: Batch and column studies. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 301, 214–223. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Park, J.M.; Yang, J.-W. Micro precipitation of lead on the surface of crab shell particles. Process Biochem. 1997, 32, 671–677. [Google Scholar] [CrossRef]
- Londono-Zuluaga, C.; Jameel, H.; Gonzalez, R.W.; Lucia, L. Crustacean shell-based biosorption water remediation platforms: Status and perspectives. J. Environ. Manag. 2019, 231, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.J.; Yeom, S.H. Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate. Bioresour. Technol. 2009, 100, 2646–2649. [Google Scholar] [CrossRef] [PubMed]
Model | Equation | Nomenclature | Reference | |
---|---|---|---|---|
Langmuir | qe qm Ce bL | Equilibrium biosorption capacity (mmol/g) Maximum biosorption capacity (mmol/g) Equilibrium heavy metal concentration in the aqueous phase (mM) Langmuir constant (L/mmol) | [33] | |
Freundlich | 1/nF kF | Relative indicator of the biosorption intensity Indicator of the capacity of biosorption (mmol/g) (mmol/L)−1/nF | [33] | |
Redlich–Peterson | kRP aRP bRP | Model parameter (L/g) Model parameter (mmol/L)−BRP Model parameter | [17] | |
Sips | qm bs ns | Maximum biosorption capacity (mmol/g) Model parameter (mmol/L)−nS Sips parameter | [34] |
Model | Equation | Nomenclature | Reference |
---|---|---|---|
Non-modified competitive Langmuir | qmZn’, qmNi’: Maximum Zn2+ and Ni2+ biosorption capacity (mmol/g). bLZn′, bLNi′: Langmuir constants for Zn2+ and Ni2+ biosorption (L/mmol) CeZn, CeNi: Equilibrium Zn2+ and Ni2+ concentrations (mM). | [35] | |
Uncompetitive Langmuir | qmZn*, qmNi*: Maximum Zn2+ and Ni2+ biosorption capacity (mmol/g). bLZn*, bLNi*: Langmuir constants for Zn2+ and Ni2+ biosorption (L/mmol). b*: Langmuir parameter predicted by the uncompetitive model. CeZn, CeNi: Equilibrium Zn2+ and Ni2+ concentrations (mM). | [36] | |
Partial competitive Langmuir | qmZn’’, qmNi’’: Maximum Zn2+ and Ni2+ biosorption capacity (mmol/g). bLZn’’, bLNi’’: Langmuir constants for Zn2+ and Ni2+ biosorption (L/mmol). bNiZn, bZnNi: Affinity constant for Ni2+ with the binding site already occupied by Zn2+, and affinity constant for Zn2+ with the binding site already occupied by Ni2+, respectively. | [36] | |
Extended Freundlich | kFZn, kFNi, nFZn, nFNi: Parameters derived from the corresponding single-component Freundlich isotherm. xZn, yZn, zZn, xNi, yNi, zNi: Freundlich parameters determined from the binary equilibrium data. | [37] | |
Modified Redlich–Peterson | ηZn, ηNi: Correction coefficients for Zn2+ and Ni2+ ions estimated from binary equilibrium data. KRPNi, KRPZn, ARPNi, ARPZn, bRPNi, bRPZN: Model parameters derived from the corresponding single-component biosorption data. | [38] | |
Modified Sips | qmsZn’, qmsNi’: Maximum Zn2+ and Ni2+ biosorption capacity (mmol/g). bsZn’, bsNi’, nsZn’, nsNi’: Model parameters obtained from binary component biosorption data. | [20] |
Langmuir | ||||||
qm | bL | R2 | SSE | RMSE | ||
Zn2+ | 2.827 ± 0.123 | 0.969 ± 0.244 | 0.963 | 0.489 | 0.211 | |
Ni2+ | 3.664 ± 0.116 | 0.151 ± 0.014 | 0.994 | 0.085 | 0.088 | |
Freundlich | ||||||
kF | nF | R2 | SSE | RMSE | ||
Zn2+ | 1.291 ± 0.072 | 3.979 ± 0.308 | 0.978 | 0.292 | 0.163 | |
Ni2+ | 0.717 ± 0.055 | 2.304 ± 0.136 | 0.984 | 0.197 | 0.134 | |
Redlich–Peterson | ||||||
kRP | aRP | bRP | R2 | SSE | RMSE | |
Zn2+ | 10.82 ± 2.11 | 6.619 ± 1.485 | 0.824 ± 0.012 | 0.998 | 0.031 | 0.053 |
Ni2+ | 0.977 ± 0.108 | 0.611 ± 0.124 | 0.778 ± 0.026 | 0.999 | 0.014 | 0.035 |
Sips | ||||||
qm | bS | nS | R2 | SSE | RMSE | |
Zn2+ | 4.011 ± 0.369 | 0.505 ± 0.080 | 0.491 ± 0.048 | 0.995 | 0.062 | 0.075 |
Ni2+ | 4.706 ± 0.242 | 0.147 ± 0.007 | 0.744 ± 0.030 | 0.999 | 0.011 | 0.032 |
Nonmodified Competitive Langmuir Isotherm | |||||||||
qmZn′ | qmNi′ | bL Zn′ | bL Ni′ | R2 | SSE | RMSE | |||
Zn2+ | 2.522 ± 0.03 | 1.132 ± 0.095 | 0.176 ± 0.021 | 0.969 | 3.580 | 0.159 | |||
Ni2+ | 3.255 ± 0.084 | 3.108 ± 0.273 | 0.21 ± 0.019 | 0.972 | 2.469 | 0.132 | |||
Uncompetitive Langmuir isotherm | |||||||||
qmZn* | qmNi* | bL Zn* | bL Ni* | b* | R2 | SSE | RMSE | ||
Zn2+ | 2.54 ± 0.03 | 1.565 ± 0.16 | 0.919 ± 0.21 | 0.153 ± 0.05 | 0.976 | 2.772 | 0.141 | ||
Ni2+ | 3.288 ± 0.09 | 3.396 ± 0.34 | 0.209 ± 0.02 | 0.003 ± 0.002 | 0.972 | 2.414 | 0.131 | ||
Partial competitive Langmuir isotherm | |||||||||
qmaxZn″ | qmaxNi″ | bL Zn″ | bL Ni″ | bNiZn | bZnNi | R2 | SSE | RMSE | |
Zn2+ | 2.73 ± 0.04 | 1.20 ± 0.1 | 0.89 ± 0.18 | 0.24 ± 0.02 | 0.044 ± 0.01 | 0.972 | 2.069 | 0.122 | |
Ni2+ | 3.69 ± 0.08 | 0.97 ± 0.13 | 0.15 ± 0.01 | 0.67 ± 0.06 | 0.006 ± 0.001 | 0.979 | 2.975 | 0.84 | |
Extended Freundlich isotherm | |||||||||
xZn | yZn | zZn | xNi | yNi | zNi | R2 | SSE | RMSE | |
Zn2+ | 0.25 ± 0.03 | 0.23 ± 0.03 | 0.43 ± 0.04 | 0.964 | 4.179 | 0.173 | |||
Ni2+ | 0.06 ± 0.04 | 0.88 ± 0.11 | 0.85 ± 0.03 | 0.977 | 2.001 | 0.120 | |||
Modified Redlich–Peterson isotherm | |||||||||
ηZn | ηNi | R2 | SSE | RMSE | |||||
Zn2+ | 1.678 ± 0.089 | 0.865 ± 0.142 | 0.966 | 3.940 | 0.167 | ||||
Ni2+ | 1.097 ± 0.110 | 0.925 ± 0.046 | 0.965 | 3.046 | 0.146 | ||||
Modified Sips isotherm | |||||||||
qmsZn’ | bS Zn’ | nSZn’ | qmsNi’ | bS Ni’ | nS Ni’ | R2 | SSE | RMSE | |
Zn2+ | 3.07 ± 0.06 | 0.96 ± 0.07 | 0.64 ± 0.02 | 0.65 ± 0.09 | 0.45 ± 0.03 | 0.992 | 0.986 | 0.084 | |
Ni2+ | 1.54 ± 0.17 | 0.85 ± 0.03 | 3.37 ± 0.54 | 0.15 ± 0.02 | 0.65 ± 0.03 | 0.984 | 1.391 | 0.100 |
% | ||||
---|---|---|---|---|
Component | Native CS | Zn2+-Loaded CS | Ni2+-Loaded CS | Zn2++Ni2+-Loaded CS |
ZnO | 0.03 | 43.9 | 0.03 | 44.00 |
NiO | 0.01 | 0.02 | 52.1 | 8.29 |
CaO | 32.68 | 16.51 | 13.83 | 13.73 |
Trace metals | 9.05 | 10.07 | 9.44 | 9.45 |
LOI | 58.23 | 29.5 | 24.6 | 24.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Barrera, L.; Cristiani-Urbina, E. Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass. Processes 2022, 10, 886. https://doi.org/10.3390/pr10050886
Morales-Barrera L, Cristiani-Urbina E. Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass. Processes. 2022; 10(5):886. https://doi.org/10.3390/pr10050886
Chicago/Turabian StyleMorales-Barrera, Liliana, and Eliseo Cristiani-Urbina. 2022. "Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass" Processes 10, no. 5: 886. https://doi.org/10.3390/pr10050886
APA StyleMorales-Barrera, L., & Cristiani-Urbina, E. (2022). Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass. Processes, 10(5), 886. https://doi.org/10.3390/pr10050886