Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Identification of TBL Criteria for Sustainable Supplier Selection
2.2. MCDM-Techniques-Based Approaches for Supporting Sustainable Supplier Selection
2.3. Research Gaps
- In practice, this is the first research study in the context of the Vietnamese chemical industry to perform a comprehensive sustainable supplier selection (SSS) procedure. Significant characteristics of TBL within the context are investigated and finalized by means of a literature review and experts’ opinions, as are the general sustainability requirements based on the three pillars of sustainability (economic, environmental, and social) in the Vietnamese chemical industry. This is an important benefit of this work.
- Within the literature of MCDM methods, this study is the first to design an integrated SF-AHP and CoCoSo methodology for SSS. The MCDM method is implemented with the aid of experts’ inputs.
- A real case study is performed to evaluate the performances of five suppliers in terms of achieving social sustainability goals.
- With regard to managerial implications, our proposed approach and results could form a basis for making informed decisions that help firms to achieve supply chain sustainability, to capture opportunities, and to maintain competitiveness through reconfiguring resources. The method may be useful for case studies in other countries and other sustainability problems.
3. Materials and Methods
3.1. Spherical Fuzzy Analytical Hierarchy Process (SF-AHP)
- Union operation
- Intersection operation
- Addition operation
- Multiplication operation
- Multiplication by a scalar;
- Power of
3.2. Combined Compromise Solution (CoCoSo)
4. Results Analysis
4.1. A Case Study in the Chemical Industry in Vietnam
4.2. SF-AHP Model for Determination of Criteria Weights
4.3. CoCoSo Model for Ranking Suppliers
5. Results Validation
5.1. Sensitivity Analysis
5.2. Comparison Analysis
6. Managerial Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EC1 | EC2 | EC3 | EC4 | EC5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC1 | 0.5000 | 0.4000 | 0.4000 | 0.4796 | 0.5017 | 0.3177 | 0.3754 | 0.6163 | 0.2794 | 0.4978 | 0.4837 | 0.3140 | 0.3963 | 0.5919 | 0.2929 |
EC2 | 0.4585 | 0.5143 | 0.3245 | 0.5000 | 0.4000 | 0.4000 | 0.4774 | 0.5111 | 0.3068 | 0.4294 | 0.5529 | 0.3133 | 0.5174 | 0.4448 | 0.3393 |
EC3 | 0.5617 | 0.4149 | 0.3087 | 0.4621 | 0.5197 | 0.3404 | 0.5000 | 0.4000 | 0.4000 | 0.4845 | 0.4977 | 0.3138 | 0.5666 | 0.4243 | 0.2990 |
EC4 | 0.4378 | 0.5372 | 0.3171 | 0.5121 | 0.4554 | 0.4221 | 0.4498 | 0.5250 | 0.3175 | 0.5000 | 0.4000 | 0.4000 | 0.5173 | 0.4587 | 0.3286 |
EC5 | 0.5518 | 0.4219 | 0.3129 | 0.4185 | 0.5407 | 0.2720 | 0.4417 | 0.5234 | 0.3346 | 0.4289 | 0.5442 | 0.3240 | 0.5000 | 0.4000 | 0.4000 |
EC6 | 0.3537 | 0.6260 | 0.2893 | 0.4378 | 0.5372 | 0.1646 | 0.3734 | 0.6160 | 0.2821 | 0.4579 | 0.5034 | 0.3455 | 0.3470 | 0.6479 | 0.2618 |
EC7 | 0.5406 | 0.4321 | 0.3215 | 0.5069 | 0.4689 | 0.4338 | 0.5114 | 0.4569 | 0.3312 | 0.5728 | 0.3981 | 0.3082 | 0.3634 | 0.6301 | 0.2749 |
SO1 | 0.5839 | 0.3999 | 0.2920 | 0.5254 | 0.4503 | 0.4317 | 0.5816 | 0.3940 | 0.3079 | 0.4633 | 0.5105 | 0.3209 | 0.3836 | 0.5985 | 0.2960 |
SO2 | 0.4585 | 0.5067 | 0.3319 | 0.4585 | 0.5143 | 0.2471 | 0.3313 | 0.6645 | 0.2488 | 0.3497 | 0.6465 | 0.2550 | 0.3378 | 0.6488 | 0.2694 |
SO3 | 0.4457 | 0.5089 | 0.3517 | 0.4413 | 0.5490 | 0.0778 | 0.3497 | 0.6417 | 0.2623 | 0.4138 | 0.5743 | 0.2989 | 0.3734 | 0.6107 | 0.2892 |
SO4 | 0.3313 | 0.6668 | 0.2483 | 0.3836 | 0.6067 | 0.0409 | 0.2884 | 0.7121 | 0.2159 | 0.3164 | 0.6838 | 0.2350 | 0.3404 | 0.6546 | 0.2553 |
EN1 | 0.4417 | 0.5234 | 0.3346 | 0.4138 | 0.5617 | 0.2704 | 0.4463 | 0.5197 | 0.3313 | 0.4579 | 0.5111 | 0.3383 | 0.4289 | 0.5442 | 0.3240 |
EN2 | 0.4457 | 0.5165 | 0.3446 | 0.4579 | 0.5111 | 0.4319 | 0.4883 | 0.4844 | 0.3236 | 0.4663 | 0.4971 | 0.3359 | 0.3634 | 0.6198 | 0.2890 |
EN3 | 0.4711 | 0.5011 | 0.3249 | 0.5114 | 0.4569 | 0.4527 | 0.4503 | 0.5050 | 0.3486 | 0.4503 | 0.5050 | 0.3486 | 0.4674 | 0.4953 | 0.3388 |
EN4 | 0.3470 | 0.6479 | 0.2618 | 0.3982 | 0.5943 | 0.1501 | 0.2884 | 0.7065 | 0.2235 | 0.3164 | 0.6781 | 0.2426 | 0.3021 | 0.6964 | 0.2290 |
EC6 | EC7 | SO1 | SO2 | SO3 | |||||||||||
EC1 | 0.5889 | 0.3830 | 0.3120 | 0.4118 | 0.5748 | 0.3063 | 0.3657 | 0.6287 | 0.2663 | 0.4738 | 0.5017 | 0.3242 | 0.4946 | 0.4677 | 0.3488 |
EC2 | 0.4978 | 0.4837 | 0.3140 | 0.4431 | 0.5432 | 0.3139 | 0.4197 | 0.5689 | 0.3065 | 0.4796 | 0.5017 | 0.3177 | 0.5016 | 0.4936 | 0.2955 |
EC3 | 0.5821 | 0.4062 | 0.2986 | 0.4260 | 0.5579 | 0.3131 | 0.3489 | 0.6453 | 0.2717 | 0.6291 | 0.3667 | 0.2731 | 0.5995 | 0.3912 | 0.2859 |
EC4 | 0.4873 | 0.4825 | 0.3419 | 0.3784 | 0.6096 | 0.2861 | 0.4705 | 0.5128 | 0.3105 | 0.6069 | 0.3912 | 0.2770 | 0.5397 | 0.4514 | 0.3027 |
EC5 | 0.6171 | 0.3770 | 0.2816 | 0.6054 | 0.3870 | 0.2896 | 0.5700 | 0.4099 | 0.3088 | 0.6077 | 0.3730 | 0.2966 | 0.5751 | 0.4062 | 0.3066 |
EC6 | 0.5000 | 0.4000 | 0.4000 | 0.4497 | 0.5312 | 0.3206 | 0.4346 | 0.5529 | 0.3070 | 0.5642 | 0.4153 | 0.3134 | 0.5584 | 0.4205 | 0.3178 |
EC7 | 0.4934 | 0.4751 | 0.3325 | 0.5000 | 0.4000 | 0.4000 | 0.5574 | 0.4153 | 0.3209 | 0.6160 | 0.3709 | 0.2851 | 0.5708 | 0.3928 | 0.3263 |
SO1 | 0.5121 | 0.4644 | 0.3212 | 0.3910 | 0.5843 | 0.3096 | 0.5000 | 0.4000 | 0.4000 | 0.5642 | 0.4153 | 0.3134 | 0.5369 | 0.4435 | 0.3112 |
SO2 | 0.3910 | 0.5902 | 0.3026 | 0.3404 | 0.6499 | 0.2624 | 0.3910 | 0.5902 | 0.3026 | 0.5000 | 0.4000 | 0.4000 | 0.4193 | 0.5729 | 0.2893 |
SO3 | 0.3986 | 0.5818 | 0.3092 | 0.3705 | 0.6012 | 0.3092 | 0.3951 | 0.5842 | 0.2997 | 0.5121 | 0.4696 | 0.3077 | 0.5000 | 0.4000 | 0.4000 |
SO4 | 0.3565 | 0.6347 | 0.2689 | 0.2997 | 0.6896 | 0.2495 | 0.3734 | 0.6135 | 0.2886 | 0.3079 | 0.6908 | 0.2354 | 0.3565 | 0.6272 | 0.2825 |
EN1 | 0.4372 | 0.5342 | 0.3308 | 0.3986 | 0.5757 | 0.3162 | 0.4417 | 0.5234 | 0.3346 | 0.4934 | 0.4751 | 0.3325 | 0.5891 | 0.3846 | 0.2987 |
EN2 | 0.5069 | 0.4689 | 0.3251 | 0.3565 | 0.6347 | 0.2689 | 0.6115 | 0.3700 | 0.2833 | 0.6638 | 0.3312 | 0.2494 | 0.5174 | 0.4507 | 0.3252 |
EN3 | 0.4407 | 0.5322 | 0.3246 | 0.4579 | 0.5111 | 0.3383 | 0.5081 | 0.4633 | 0.3231 | 0.5406 | 0.4321 | 0.3215 | 0.5121 | 0.4554 | 0.3291 |
EN4 | 0.2940 | 0.6992 | 0.2364 | 0.3634 | 0.6275 | 0.2755 | 0.3672 | 0.6249 | 0.2717 | 0.3634 | 0.6275 | 0.2755 | 0.3139 | 0.6808 | 0.2488 |
SO4 | EN1 | EN2 | EN3 | EN4 | |||||||||||
EC1 | 0.6484 | 0.3490 | 0.2650 | 0.4962 | 0.4758 | 0.3318 | 0.5006 | 0.4677 | 0.3425 | 0.4668 | 0.5149 | 0.3174 | 0.6171 | 0.3770 | 0.2816 |
EC2 | 0.5666 | 0.4243 | 0.2990 | 0.5267 | 0.4514 | 0.3174 | 0.4932 | 0.4825 | 0.3356 | 0.4260 | 0.5579 | 0.3131 | 0.5410 | 0.4548 | 0.2916 |
EC3 | 0.6791 | 0.3228 | 0.2443 | 0.4868 | 0.4879 | 0.3246 | 0.4422 | 0.5430 | 0.3099 | 0.4852 | 0.4801 | 0.3417 | 0.6509 | 0.3422 | 0.2640 |
EC4 | 0.6226 | 0.3811 | 0.2708 | 0.4932 | 0.4825 | 0.3356 | 0.4701 | 0.5039 | 0.3308 | 0.4852 | 0.4801 | 0.3417 | 0.6530 | 0.3375 | 0.2657 |
EC5 | 0.6235 | 0.3709 | 0.2759 | 0.5173 | 0.4587 | 0.3286 | 0.5909 | 0.3870 | 0.3063 | 0.4689 | 0.5056 | 0.3278 | 0.6463 | 0.3535 | 0.2634 |
EC6 | 0.5934 | 0.3969 | 0.2912 | 0.5120 | 0.4632 | 0.3324 | 0.4431 | 0.5432 | 0.3139 | 0.5035 | 0.4739 | 0.3283 | 0.6560 | 0.3301 | 0.2718 |
EC7 | 0.6414 | 0.3372 | 0.2872 | 0.5517 | 0.4205 | 0.3251 | 0.5934 | 0.3969 | 0.2912 | 0.4932 | 0.4825 | 0.3356 | 0.5873 | 0.4026 | 0.2962 |
SO1 | 0.5928 | 0.3909 | 0.3005 | 0.4962 | 0.4758 | 0.3318 | 0.3399 | 0.6546 | 0.2533 | 0.4212 | 0.5653 | 0.2998 | 0.5762 | 0.4179 | 0.2881 |
SO2 | 0.6397 | 0.3600 | 0.2695 | 0.4497 | 0.5312 | 0.3206 | 0.2837 | 0.7164 | 0.2081 | 0.4118 | 0.5748 | 0.3063 | 0.5873 | 0.4026 | 0.2962 |
SO3 | 0.5970 | 0.3811 | 0.3014 | 0.3517 | 0.6396 | 0.2662 | 0.4212 | 0.5622 | 0.3065 | 0.4294 | 0.5529 | 0.3133 | 0.6255 | 0.3664 | 0.2846 |
SO4 | 0.5000 | 0.4000 | 0.4000 | 0.4008 | 0.5880 | 0.2994 | 0.3613 | 0.6287 | 0.2728 | 0.3857 | 0.6044 | 0.2861 | 0.6291 | 0.3667 | 0.2731 |
EN1 | 0.5454 | 0.4288 | 0.3196 | 0.5000 | 0.4000 | 0.4000 | 0.4902 | 0.4758 | 0.3382 | 0.5981 | 0.3870 | 0.2981 | 0.6807 | 0.3281 | 0.2281 |
EN2 | 0.5839 | 0.3885 | 0.3011 | 0.4417 | 0.5160 | 0.3418 | 0.5000 | 0.4000 | 0.4000 | 0.5305 | 0.4378 | 0.3319 | 0.6725 | 0.3182 | 0.2492 |
EN3 | 0.5567 | 0.4184 | 0.3108 | 0.3634 | 0.6250 | 0.2820 | 0.4095 | 0.5585 | 0.3238 | 0.5000 | 0.4000 | 0.4000 | 0.5598 | 0.4243 | 0.3069 |
EN4 | 0.3313 | 0.6645 | 0.2488 | 0.2776 | 0.7240 | 0.1957 | 0.2964 | 0.6986 | 0.2233 | 0.3836 | 0.6012 | 0.2894 | 0.5000 | 0.4000 | 0.4000 |
Weights of Criteria | 0.0684 | 0.0666 | 0.0751 | 0.0709 | 0.0768 | 0.0678 | 0.0753 | 0.0694 | 0.0602 | 0.0621 | 0.0532 | 0.0691 | 0.0718 | 0.0658 | 0.0475 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Types of criteria | Benefit | Cost | Cost | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit |
Criteria | EC1 | EC2 | EC3 | EC4 | EC5 | EC6 | EC7 | SO1 | SO2 | SO3 | SO4 | EN1 | EN2 | EN3 | EN4 |
CHE-01 | 0.0282 | 0.0328 | 0.0424 | 0.0404 | 0.0241 | 0.0411 | 0.0392 | 0.0278 | 0.0252 | 0.0222 | 0.0097 | 0.0111 | 0.0000 | 0.0000 | 0.0000 |
CHE-02 | 0.0000 | 0.0666 | 0.0751 | 0.0600 | 0.0576 | 0.0377 | 0.0323 | 0.0198 | 0.0267 | 0.0310 | 0.0000 | 0.0000 | 0.0575 | 0.0219 | 0.0069 |
CHE-03 | 0.0000 | 0.0545 | 0.0711 | 0.0000 | 0.0000 | 0.0678 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0152 | 0.0384 | 0.0000 | 0.0000 | 0.0012 |
CHE-04 | 0.0403 | 0.0272 | 0.0277 | 0.0491 | 0.0576 | 0.0151 | 0.0753 | 0.0595 | 0.0602 | 0.0388 | 0.0228 | 0.0077 | 0.0000 | 0.0219 | 0.0359 |
CHE-05 | 0.0684 | 0.0000 | 0.0000 | 0.0709 | 0.0768 | 0.0000 | 0.0646 | 0.0694 | 0.0602 | 0.0621 | 0.0532 | 0.0691 | 0.0718 | 0.0658 | 0.0475 |
Weights of Criteria | 0.0684 | 0.0666 | 0.0751 | 0.0709 | 0.0768 | 0.0678 | 0.0753 | 0.0694 | 0.0602 | 0.0621 | 0.0532 | 0.0691 | 0.0718 | 0.0658 | 0.0475 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Types of criteria | Benefit | Cost | Cost | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit | Benefit |
Criteria | EC1 | EC2 | EC3 | EC4 | EC5 | EC6 | EC7 | SO1 | SO2 | SO3 | SO4 | EN1 | EN2 | EN3 | EN4 |
CHE-01 | 0.9412 | 0.9540 | 0.9580 | 0.9608 | 0.9148 | 0.9667 | 0.9520 | 0.9384 | 0.9490 | 0.9383 | 0.9136 | 0.8814 | 0.0000 | 0.0000 | 0.0000 |
CHE-02 | 0.0000 | 1.0000 | 1.0000 | 0.9882 | 0.9782 | 0.9609 | 0.9382 | 0.9167 | 0.9524 | 0.9579 | 0.0000 | 0.0000 | 0.9841 | 0.9303 | 0.9128 |
CHE-03 | 0.0790 | 0.9867 | 0.9959 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9355 | 0.9602 | 0.0799 | 0.0977 | 0.8384 |
CHE-04 | 0.9643 | 0.9422 | 0.9278 | 0.9742 | 0.9782 | 0.9031 | 1.0000 | 0.9894 | 1.0000 | 0.9712 | 0.9559 | 0.8591 | 0.0799 | 0.9303 | 0.9868 |
CHE-05 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.9885 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
References
- Current Status of the Industrial Chemical Industry in Vietnam. Available online: http://cpevietnam.com.vn/thuc-trang-nganh-hoa-chat-cong-nghiep-nuoc-ta-hien-nay/ (accessed on 9 April 2022).
- The Chemical Industry Transforms in the 4.0 Revolution. Available online: https://moit.gov.vn/tin-tuc/phat-trien-cong-nghiep/nganh-cong-nghiep-hoa-chat-chuyen-minh-trong-cuoc-cach-mang-4.0.html (accessed on 9 April 2022).
- Nguyen, T.T.T.; Nguyen, T.T.H.; Pham, T.T.H. The Effect of Corporate Entrepreneurship, Organizational Culture on Supply Chain Management and Business Performance in Chemical Industry. Uncertain Supply Chain Manag. 2020, 8, 67–76. [Google Scholar] [CrossRef]
- The Role of Chemical Supplier. Available online: http://hoachatnhapkhauvn.com/cach-chon-nha-cung-cap-hoa-chat (accessed on 9 April 2022).
- Nguyen, T.A.; Tran, H.L. The Determinants of Corporate Social Responsibility Disclosure: Evidence from Vietnam’s Listed Companies in Chemical Industry. J. Int. Econ. Manag. 2021, 20, 18–41. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H.; Fujita, H. The New Extension of the MULTIMOORA Method for Sustainable Supplier Selection with Intuitionistic Linguistic Rough Numbers. Appl. Soft Comput. 2021, 99, 106893. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Akbari Jokar, M.R.; Ahmad, R.; Abdul Rahim, A.R. Sustainable Supplier Selection: A Multi-Criteria Intuitionistic Fuzzy TOPSIS Method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Awasthi, A.; Govindan, K.; Gold, S. Multi-Tier Sustainable Global Supplier Selection Using a Fuzzy AHP-VIKOR Based Approach. Int. J. Prod. Econ. 2018, 195, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Qin, J.; Liu, J.; Martínez, L. Sustainable Supplier Selection Based on AHPSort II in Interval Type-2 Fuzzy Environment. Inf. Sci. 2019, 483, 273–293. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. A Novel Spherical Fuzzy Analytic Hierarchy Process and Its Renewable Energy Application. Soft Comput. 2020, 24, 4607–4621. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. A Novel VIKOR Method Using Spherical Fuzzy Sets and Its Application to Warehouse Site Selection. J. Intell. Fuzzy Syst. 2019, 37, 1197–1211. [Google Scholar] [CrossRef]
- Ayyildiz, E.; Taskin Gumus, A. A Novel Spherical Fuzzy AHP-Integrated Spherical WASPAS Methodology for Petrol Station Location Selection Problem: A Real Case Study for İstanbul. Environ. Sci. Pollut. Res. 2020, 27, 36109–36120. [Google Scholar] [CrossRef]
- Ulutaş, A.; Karakuş, C.B.; Topal, A. Location Selection for Logistics Center with Fuzzy SWARA and CoCoSo Methods. J. Intell. Fuzzy Syst. 2020, 38, 4693–4709. [Google Scholar] [CrossRef]
- Dogan, O. Process Mining Technology Selection with Spherical Fuzzy AHP and Sensitivity Analysis. Expert Syst. Appl. 2021, 178, 114999. [Google Scholar] [CrossRef]
- Sharaf, I.M. Global Supplier Selection with Spherical Fuzzy Analytic Hierarchy Process. In Decision Making with Spherical Fuzzy Sets; Springer: Cham, Switzerland, 2021; pp. 323–348. [Google Scholar]
- Unal, Y.; Temur, G.T. Sustainable Supplier Selection by Using Spherical Fuzzy AHP. J. Intell. Fuzzy Syst. 2021, 42, 593–603. [Google Scholar] [CrossRef]
- Unal, Y.; Temur, G.T. Using Spherical Fuzzy AHP Based Approach for Prioritization of Criteria Affecting Sustainable Supplier Selection. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2021; pp. 160–168. [Google Scholar]
- Ecer, F.; Pamucar, D. Sustainable Supplier Selection: A Novel Integrated Fuzzy Best Worst Method (F-BWM) and Fuzzy CoCoSo with Bonferroni (CoCoSo’B) Multi-Criteria Model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Menekşe, A.; Camgöz Akdağ, H. Distance Education Tool Selection Using Novel Spherical Fuzzy AHP EDAS. Soft Comput. 2022, 26, 1617–1635. [Google Scholar] [CrossRef]
- Yildiz, D.; Temur, G.T.; Beskese, A.; Bozbura, F.T. A Spherical Fuzzy Analytic Hierarchy Process Based Approach to Prioritize Career Management Activities Improving Employee Retention. J. Intell. Fuzzy Syst. 2020, 39, 6603–6618. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Pamucar, D.; Ecer, F.; Chatterjee, P. An Integrated BWM-LBWA-CoCoSo Framework for Evaluation of Healthcare Sectors in Eastern Europe. Socio-Econ. Plan. Sci. 2021, 78, 101052. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Ecer, F.; Pamucar, D.; Karamaşa, Ç. Comparative Assessment of Social Sustainability Performance: Integrated Data-Driven Weighting System and CoCoSo Model. Sustain. Cities Soc. 2021, 71, 102975. [Google Scholar] [CrossRef]
- Amindoust, A.; Ahmed, S.; Saghafinia, A.; Bahreininejad, A. Sustainable Supplier Selection: A Ranking Model Based on Fuzzy Inference System. Appl. Soft Comput. 2012, 12, 1668–1677. [Google Scholar] [CrossRef]
- Govindan, K.; Kadziński, M.; Sivakumar, R. Application of a Novel PROMETHEE-Based Method for Construction of a Group Compromise Ranking to Prioritization of Green Suppliers in Food Supply Chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable Supplier Selection in Healthcare Industries Using a New MCDM Method: Measurement of Alternatives and Ranking According to COmpromise Solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Y.; Barnes, D. An Integrated Decision-Making Approach for Sustainable Supplier Selection in the Chemical Industry. Expert Syst. Appl. 2021, 184, 115553. [Google Scholar] [CrossRef]
- Nguyen, N.B.T.; Lin, G.-H.; Dang, T.-T. A Two Phase Integrated Fuzzy Decision-Making Framework for Green Supplier Selection in the Coffee Bean Supply Chain. Mathematics 2021, 9, 1923. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z. An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation. Sustainability 2018, 10, 2543. [Google Scholar] [CrossRef] [Green Version]
- Büyüközkan, G.; Çifçi, G. A Novel Fuzzy Multi-Criteria Decision Framework for Sustainable Supplier Selection with Incomplete Information. Comput. Ind. 2011, 62, 164–174. [Google Scholar] [CrossRef]
- Sen, D.K.; Datta, S.; Mahapatra, S.S. Sustainable Supplier Selection in Intuitionistic Fuzzy Environment: A Decision-Making Perspective. Benchmark. Int. J. 2018, 25, 545–574. [Google Scholar] [CrossRef]
- Puška, A. Rangiranje Čimbenika Za Odabir Dobavljača Putem TOPSIS Metode. Oeconomica Jadertina 2017, 5, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh Ghoushchi, S.; Dodkanloi Milan, M.; Jahangoshai Rezaee, M. Evaluation and Selection of Sustainable Suppliers in Supply Chain Using New GP-DEA Model with Imprecise Data. J. Ind. Eng. Int. 2018, 14, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Pishchulov, G.; Trautrims, A.; Chesney, T.; Gold, S.; Schwab, L. The Voting Analytic Hierarchy Process Revisited: A Revised Method with Application to Sustainable Supplier Selection. Int. J. Prod. Econ. 2019, 211, 166–179. [Google Scholar] [CrossRef]
- Dweiri, F.; Kumar, S.; Khan, S.A.; Jain, V. Designing an Integrated AHP Based Decision Support System for Supplier Selection in Automotive Industry. Expert Syst. Appl. 2016, 62, 273–283. [Google Scholar] [CrossRef]
- Kuo, R.J.; Wang, Y.C.; Tien, F.C. Integration of Artificial Neural Network and MADA Methods for Green Supplier Selection. J. Clean. Prod. 2010, 18, 1161–1170. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi Criteria Decision Making Approaches for Green Supplier Evaluation and Selection: A Literature Review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Vasiljevic, M.; Fazlollahtabar, H.; Stević, Ž.; Vesković, S. A Rough Multicriteria Approach for Evaluation of the Supplier Criteria in Automotive Industry. Decis. Mak. Appl. Manag. Eng. 2018, 1, 82–96. [Google Scholar] [CrossRef]
- Puška, A.; Kozarevic, S.; Stevic, Ž.; Stovrag, J. A New Way of Applying Interval Fuzzy Logic in Group Decision Making For Supplier Selection. Econ. Comput. Econ. Cybern. Stud. Res. 2018, 52, 217–234. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An Integrated Framework for Sustainable Supplier Selection and Evaluation in Supply Chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Hendiani, S.; Mahmoudi, A.; Liao, H. A Multi-Stage Multi-Criteria Hierarchical Decision-Making Approach for Sustainable Supplier Selection. Appl. Soft Comput. 2020, 94, 106456. [Google Scholar] [CrossRef]
- Kannan, D. Role of Multiple Stakeholders and the Critical Success Factor Theory for the Sustainable Supplier Selection Process. Int. J. Prod. Econ. 2018, 195, 391–418. [Google Scholar] [CrossRef]
- Orji, I.J.; Ojadi, F. Investigating the COVID-19 Pandemic’s Impact on Sustainable Supplier Selection in the Nigerian Manufacturing Sector. Comput. Ind. Eng. 2021, 160, 107588. [Google Scholar] [CrossRef]
- Azimifard, A.; Moosavirad, S.H.; Ariafar, S. Selecting Sustainable Supplier Countries for Iran’s Steel Industry at Three Levels by Using AHP and TOPSIS Methods. Resour. Policy 2018, 57, 30–44. [Google Scholar] [CrossRef]
- Petrudi, S.H.H.; Ahmadi, H.B.; Rehman, A.; Liou, J.J.H. Assessing Suppliers Considering Social Sustainability Innovation Factors during COVID-19 Disaster. Sustain. Prod. Consum. 2021, 27, 1869–1881. [Google Scholar] [CrossRef]
- Azadi, M.; Jafarian, M.; Saen, R.F.; Mirhedayatian, S.M. A New Fuzzy DEA Model for Evaluation of Efficiency and Effectiveness of Suppliers in Sustainable Supply Chain Management Context. Comput. Oper. Res. 2015, 54, 274–285. [Google Scholar] [CrossRef]
- Khan, A.U.; Ali, Y. Sustainable Supplier Selection for the Cold Supply Chain (CSC) in the Context of a Developing Country. Environ. Dev. Sustain. 2021, 23, 13135–13164. [Google Scholar] [CrossRef]
- Olugu, E.U.; Mammedov, Y.D.; Young, J.C.E.; Yeap, P.S. Integrating Spherical Fuzzy Delphi and TOPSIS Technique to Identify Indicators for Sustainable Maintenance Management in the Oil and Gas Industry. J. King Saud Univ. Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Li, C. Optimal Selection of Sustainable Battery Supplier for Battery Swapping Station Based on Triangular Fuzzy Entropy-MULTIMOORA Method. J. Energy Storage 2021, 34, 102013. [Google Scholar] [CrossRef]
- Jain, V.; Sangaiah, A.K.; Sakhuja, S.; Thoduka, N.; Aggarwal, R. Supplier Selection Using Fuzzy AHP and TOPSIS: A Case Study in the Indian Automotive Industry. Neural Comput. Appl. 2018, 29, 555–564. [Google Scholar] [CrossRef]
- Tong, L.; Pu, Z.; Ma, J. Maintenance Supplier Evaluation and Selection for Safe and Sustainable Production in the Chemical Industry: A Case Study. Sustainability 2019, 11, 1533. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Pu, Z.; Chen, K.; Yi, J. Sustainable Maintenance Supplier Performance Evaluation Based on an Extend Fuzzy PROMETHEE II Approach in Petrochemical Industry. J. Clean. Prod. 2020, 273, 122771. [Google Scholar] [CrossRef]
- Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Fathollahi-Fard, A.M.; Antucheviciene, J.; Nayeri, S. An Integrated Approach for a Sustainable Supplier Selection Based on Industry 4.0 Concept. Environ. Sci. Pollut. Res. 2021, 1–19. [Google Scholar] [CrossRef]
- Yazdani, M.; Pamucar, D.; Chatterjee, P.; Torkayesh, A.E. A Multi-Tier Sustainable Food Supplier Selection Model under Uncertainty. Oper. Manag. Res. 2021. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Gupta, S.; Soni, U.; Kumar, G. Green Supplier Selection Using Multi-Criterion Decision Making under Fuzzy Environment: A Case Study in Automotive Industry. Comput. Ind. Eng. 2019, 136, 663–680. [Google Scholar] [CrossRef]
- Mohammady, P.; Amid, A. Integrated Fuzzy AHP and Fuzzy VIKOR Model for Supplier Selection in an Agile and Modular Virtual Enterprise. Fuzzy Inf. Eng. 2011, 3, 411–431. [Google Scholar] [CrossRef]
- Ecer, F. Multi-Criteria Decision Making for Green Supplier Selection Using Interval Type-2 Fuzzy AHP: A Case Study of a Home Appliance Manufacturer. Oper. Res. 2022, 22, 199–233. [Google Scholar] [CrossRef]
- Kayapinar Kaya, S.; Aycin, E. An Integrated Interval Type 2 Fuzzy AHP and COPRAS-G Methodologies for Supplier Selection in the Era of Industry 4.0. Neural Comput. Appl. 2021, 33, 10515–10535. [Google Scholar] [CrossRef]
- Kahraman, C.; Öztayşi, B.; Uçal Sari, I.; Turanoǧlu, E. Fuzzy Analytic Hierarchy Process with Interval Type-2 Fuzzy Sets. Knowl.-Based Syst. 2014, 59, 48–57. [Google Scholar] [CrossRef]
- Tooranloo, H.S.; Iranpour, A. Supplier Selection and Evaluation Using Interval-Valued Intuitionistic Fuzzy AHP Method. Int. J. Procure. Manag. 2017, 10, 539. [Google Scholar] [CrossRef]
- Pamucar, D.; Yazdani, M.; Obradovic, R.; Kumar, A.; Torres-Jiménez, M. A Novel Fuzzy Hybrid Neutrosophic Decision-making Approach for the Resilient Supplier Selection Problem. Int. J. Intell. Syst. 2020, 35, 1934–1986. [Google Scholar] [CrossRef]
- Çalık, A. A Novel Pythagorean Fuzzy AHP and Fuzzy TOPSIS Methodology for Green Supplier Selection in the Industry 4.0 Era. Soft Comput. 2021, 25, 2253–2265. [Google Scholar] [CrossRef]
- Kutlu Gundogdu, F.; Kahraman, C. Extension of WASPAS with Spherical Fuzzy Sets. Informatica 2019, 30, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical Fuzzy Sets and Spherical Fuzzy TOPSIS Method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Wen, Z.; Liao, H.; Kazimieras Zavadskas, E.; Al-Barakati, A. Selection Third-Party Logistics Service Providers in Supply Chain Finance by a Hesitant Fuzzy Linguistic Combined Compromise Solution Method. Econ. Res.-Ekon. Istraživanja 2019, 32, 4033–4058. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Yazdani, M.; Ebadi Torkayesh, A.; Derakhti, A. Application of a Gray-Based Decision Support Framework for Location Selection of a Temporary Hospital during COVID-19 Pandemic. Symmetry 2020, 12, 886. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, W.; Rani, P.; Alrasheedi, M. Internet of Things (IoT) Adoption Barriers for the Circular Economy Using Pythagorean Fuzzy SWARA-CoCoSo Decision-Making Approach in the Manufacturing Sector. Technol. Forecast. Soc. Change 2021, 171, 120951. [Google Scholar] [CrossRef]
- Jahan, F.; Soni, M.; Parveen, A.; Waseem, M. Application of Combined Compromise Solution Method for Material Selection. In Advancement in Materials, Manufacturing and Energy Engineering; Springer: Singapore, 2022; pp. 379–387. [Google Scholar]
- Pamučar, D.; Ćirović, G. The Selection of Transport and Handling Resources in Logistics Centers Using Multi-Attributive Border Approximation Area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Keshavarz-Ghorabaee, M.; Turskis, Z. An Extension of the EDAS Method Based on the Use of Interval Grey Numbers. Studies Inform. Control 2017, 26, 5–12. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision-Making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Z.; Wang, Y. A Novel Hybrid MCDM Model Combining the SAW, TOPSIS and GRA Methods Based on Experimental Design. Inform. Sci. 2016, 345, 27–45. [Google Scholar] [CrossRef]
Dimension | Criteria | References | Type of Criteria |
---|---|---|---|
Economic (EC) | EC1. Quality of chemicals | [7,23,24,25,26,27,28,29,30,31,32] | Benefit |
EC2. Price | [23,24,25,26,30,31] | Cost | |
EC3. Logistics cost | [9,24,33,34] | Cost | |
EC4. On-time delivery | [23,25,26,28,30,31,32] | Benefit | |
EC5. Equipment system and technology capability | [26,29,35,36] | Benefit | |
EC6. Innovativeness | [25,30,31,32] | Benefit | |
EC7. Flexibility and reliability | [25,32,37,38,39,40] | Benefit | |
Social (SO) | SO1. Work safety and labor health | [7,23,25,26,32,35] | Benefit |
SO2. Reputation | [7,25,32,37] | Benefit | |
SO3. Disciplinary and security practices | [25,28,32] | Benefit | |
SO4. Training | [25,28,32,40,41] | Benefit | |
Environmental (EN) | EN1. Environmental management system | [23,24,25,26,30,32] | Benefit |
EN2. Green materials and technologies | [7,8,25,26,42] | Benefit | |
EN3. Land and water pollution management | [7,24,25,26,27,30,32] | Benefit | |
EN4. Recycling | [23,25,30,32] | Benefit |
Authors | Year | MCDM Techniques | Industry |
---|---|---|---|
Büyüközkan and Çifçi [29] | 2011 | Fuzzy AHP | White goods |
Azadi et al. [45] | 2015 | Fuzzy DEA | Petrochemical |
Luthra et al. [39] | 2017 | AHP and VIKOR | Automotive |
Jain et al. [49] | 2018 | AHP and TOPSIS | Automotive |
Awasthi et al. [8] | 2018 | Fuzzy AHP and Fuzzy VIKOR | Electronics |
Azimifard et al. [43] | 2018 | AHP and TOPSIS | Steel |
Memari et al. [7] | 2019 | Intuitionistic fuzzy TOPSIS | Manufacturing |
Tong et al. [50] | 2019 | Fuzzy TOPSIS | Chemical |
Stević et al. [25] | 2019 | MARCOS | Healthcare |
Hendiani et al. [40] | 2020 | Fuzzy BWM | Refineries |
Tong et al. [51] | 2020 | Fuzzy PROMETHEE II | Petrochemical |
Orji and Ojadi [42] | 2021 | Fuzzy AHP and MULTIMOORA | Manufacturing |
Wu et al. [26] | 2021 | FGRA, FMEA, EWM, DEMATEL | Chemical |
Petrudi et al. [44] | 2021 | BWM and GRA | Manufacturing |
Fallahpour et al. [52] | 2021 | Fuzzy BWM and FIS | Textile |
Yazdani et al. [53] | 2021 | SWARA, LBWA, MARCOS | Food |
Khan and Ali [46] | 2021 | ISM and Fuzzy VIKOR | Cold chain |
Olugu et al. [47] | 2021 | Spherical fuzzy Delphi and TOPSIS | Oil and gas |
Wang et al. [48] | 2021 | Triangular fuzzy entropy and MULTIMOORA | Battery |
Hoseini et al. | 2021 | Fuzzy BWM and FIS | Construction |
Linguistics Scale | Score Index (SI) | |
---|---|---|
Extremely high importance (AMI) | (0.9, 0.1, 0.0) | 9 |
Very high importance (VHI) | (0.8, 0.2, 0.1) | 7 |
High importance (HI) | (0.7, 0.3, 0.2) | 5 |
Slightly high importance (SMI) | (0.6, 0.4, 0.3) | 3 |
Equal importance (EI) | (0.5, 0.4, 0.4) | 1 |
Slightly low importance (SLI) | (0.4, 0.6, 0.3) | 1/3 |
Low importance (LI) | (0.3, 0.7, 0.2) | 1/5 |
Very low importance (VLI) | (0.2, 0.8, 0.1) | 1/7 |
Extremely low importance (ALI) | (0.1, 0.9, 0.0) | 1/9 |
No. | Company | Symbol | Website (accessed on 7 April 2022) |
---|---|---|---|
1 | Duc Giang Chemicals Group Joint Stock Company | CHE-01 | http://www.ducgiangchem.vn/ |
2 | Ho Chi Minh Chemical Joint Stock Company | CHE-02 | https://www.hcmc.com.vn/ |
3 | South Basic Chemicals Joint Stock Company | CHE-03 | https://sochemvn.com/ |
4 | Viet Tri Chemical Joint Stock Company | CHE-04 | http://vitrichem.vn/ |
5 | Vietnam National Chemical Group | CHE-05 | http://www.vinachem.com.vn/ |
Category | Profile | No. of Respondents |
---|---|---|
Education level | BSc in Supply Chain Management/Industrial Engineering/Chemical Engineering | 8 |
MSc in Supply Chain Management/Industrial Systems Engineering and Management/Chemical Engineering | 4 | |
PhD in Supply Chain Management/Industrial Systems Engineering and Management/Chemical Engineering | 3 | |
Work experience | Between five and ten years | 10 |
More than ten years | 5 | |
Work field | Chemical companies | 6 |
Chemical logistics companies | 2 | |
Research | 7 |
Dimension | Left Criterion Is Greater | Right Criterion Is Greater | Dimension | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AMI | VHI | HI | SMI | EI | SLI | LI | VLI | ALI | ||
C1 | 2 | 1 | 2 | 1 | 2 | 4 | 3 | C2 | ||
C1 | 3 | 3 | 3 | 2 | 1 | 3 | C3 | |||
C2 | 1 | 2 | 3 | 1 | 2 | 2 | 4 | C3 |
Dimension | C1 | C2 | C3 |
---|---|---|---|
C1 | 1.0000 | 0.6366 | 0.9036 |
C2 | 1.5708 | 1.0000 | 0.7291 |
C3 | 1.1067 | 1.3715 | 1.0000 |
SUM | 3.6775 | 3.0081 | 2.6327 |
Dimension | C1 | C2 | C3 | MEAN | WSV | CV |
---|---|---|---|---|---|---|
C1 | 0.2719 | 0.2116 | 0.3432 | 0.2756 | 0.8379 | 3.0405 |
C2 | 0.4271 | 0.3324 | 0.2769 | 0.3455 | 1.0547 | 3.0526 |
C3 | 0.3009 | 0.4559 | 0.3798 | 0.3789 | 1.1578 | 3.0556 |
Dimension | C1 | C2 | C3 | ||||||
---|---|---|---|---|---|---|---|---|---|
C1 | 0.5000 | 0.4000 | 0.4000 | 0.3934 | 0.6224 | 0.2186 | 0.4332 | 0.5726 | 0.2591 |
C2 | 0.5036 | 0.5208 | 0.2289 | 0.5000 | 0.4000 | 0.4000 | 0.3974 | 0.6192 | 0.2204 |
C3 | 0.4753 | 0.5227 | 0.2808 | 0.5029 | 0.5184 | 0.2413 | 0.5000 | 0.4000 | 0.4000 |
Dimension | SF-AHP Weight | Calculations to Obtain Crisp Weights | Crisp Weights | ||
---|---|---|---|---|---|
C1 | 0.4455 | 0.5224 | 0.3105 | 11.8023 | 0.3140 |
C2 | 0.4709 | 0.5053 | 0.3013 | 12.6112 | 0.3355 |
C3 | 0.4930 | 0.4768 | 0.3174 | 13.1789 | 0.3506 |
Criteria | Geometric Mean | Spherical Fuzzy Weights | Crisp Weights | ||||
---|---|---|---|---|---|---|---|
EC1. Quality of chemicals | 0.7513 | 0.4900 | 0.1033 | 0.4987 | 0.4900 | 0.3215 | 0.0684 |
EC2. Price | 0.7617 | 0.4925 | 0.1086 | 0.4882 | 0.4925 | 0.3295 | 0.0666 |
EC3. Logistics cost | 0.7080 | 0.4538 | 0.0983 | 0.5404 | 0.4538 | 0.3135 | 0.0751 |
EC4. On-time delivery | 0.7327 | 0.4728 | 0.1100 | 0.5170 | 0.4728 | 0.3317 | 0.0709 |
EC5. Equipment system and technology capability | 0.6941 | 0.4318 | 0.1029 | 0.5531 | 0.4318 | 0.3208 | 0.0768 |
EC6. Innovativeness | 0.7582 | 0.5026 | 0.0943 | 0.4917 | 0.5026 | 0.3071 | 0.0678 |
EC7. Flexibility and reliability | 0.7012 | 0.4294 | 0.1121 | 0.5466 | 0.4294 | 0.3349 | 0.0753 |
SO1. Work safety and labor health | 0.7422 | 0.4751 | 0.1130 | 0.5077 | 0.4751 | 0.3362 | 0.0694 |
SO2. Reputation | 0.8068 | 0.5598 | 0.0866 | 0.4396 | 0.5598 | 0.2943 | 0.0602 |
SO3. Disciplinary and security practices | 0.7942 | 0.5408 | 0.0919 | 0.4537 | 0.5408 | 0.3031 | 0.0621 |
SO4. Training | 0.8479 | 0.6235 | 0.0709 | 0.3900 | 0.6235 | 0.2662 | 0.0532 |
EN1. Environmental management system | 0.7481 | 0.4847 | 0.0988 | 0.5019 | 0.4847 | 0.3143 | 0.0691 |
EN2. Green materials and technologies | 0.7279 | 0.4659 | 0.1058 | 0.5216 | 0.4659 | 0.3252 | 0.0718 |
EN3. Land and water pollution management | 0.7653 | 0.4867 | 0.1140 | 0.4845 | 0.4867 | 0.3376 | 0.0658 |
EN4. Recycling | 0.8783 | 0.6610 | 0.0548 | 0.3489 | 0.6610 | 0.2341 | 0.0475 |
Alternative | Ka | Ranking | Kb | Ranking | Kc | Ranking | K | Final Ranking |
---|---|---|---|---|---|---|---|---|
CHE-01 | 0.2051 | 4 | 3.2738 | 4 | 0.8154 | 4 | 2.2495 | 4 |
CHE-02 | 0.2122 | 3 | 3.9158 | 3 | 0.8435 | 3 | 2.5454 | 3 |
CHE-03 | 0.1099 | 5 | 2.0000 | 5 | 0.4368 | 5 | 1.3068 | 5 |
CHE-04 | 0.2473 | 1 | 4.4256 | 2 | 0.9831 | 1 | 2.9100 | 2 |
CHE-05 | 0.2255 | 2 | 5.1492 | 1 | 0.8965 | 2 | 3.1039 | 1 |
Alternative | Final Appraisal Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
λ = 0 | λ = 0.1 | λ = 0.2 | λ = 0.3 | λ = 0.4 | λ = 0.5 | λ = 0.6 | λ = 0.7 | λ = 0.8 | λ = 0.9 | λ = 1 | |
CHE-01 | 2.2639 | 2.2622 | 2.2602 | 2.2576 | 2.2541 | 2.2495 | 2.2428 | 2.2324 | 2.2139 | 2.1716 | 1.9736 |
CHE-02 | 2.5537 | 2.5527 | 2.5515 | 2.5500 | 2.5481 | 2.5454 | 2.5415 | 2.5355 | 2.5249 | 2.5008 | 2.3937 |
CHE-03 | 1.3115 | 1.3109 | 1.3103 | 1.3094 | 1.3083 | 1.3068 | 1.3047 | 1.3013 | 1.2953 | 1.2818 | 1.2214 |
CHE-04 | 2.9215 | 2.9202 | 2.9185 | 2.9164 | 2.9137 | 2.9100 | 2.9047 | 2.8965 | 2.8818 | 2.8485 | 2.6992 |
CHE-05 | 3.0996 | 3.1001 | 3.1007 | 3.1015 | 3.1025 | 3.1039 | 3.1059 | 3.1089 | 3.1142 | 3.1261 | 3.1760 |
Alternative | SF-AHP and COCOSO | SF-AHP and MABAC | SF-AHP and EDAS | SF-AHP and WASPAS | SF-AHP and MARCOS | SF-AHP and ARAS | SF-AHP and SAW | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | |
CHE-01 | 2.2495 | 4 | -0.0901 | 4 | 0.3298 | 4 | 0.6520 | 4 | 0.5647 | 4 | 0.6402 | 4 | 0.6662 | 4 |
CHE-02 | 2.5454 | 3 | 0.0588 | 3 | 0.5805 | 2 | 0.7672 | 2 | 0.6619 | 2 | 0.7847 | 2 | 0.7809 | 2 |
CHE-03 | 1.3068 | 5 | -0.1862 | 5 | 0.2126 | 5 | 0.6259 | 5 | 0.5435 | 5 | 0.6315 | 5 | 0.6412 | 5 |
CHE-04 | 2.9100 | 2 | 0.1046 | 2 | 0.5128 | 3 | 0.7189 | 3 | 0.6322 | 3 | 0.7113 | 3 | 0.7459 | 3 |
CHE-05 | 3.1039 | 1 | 0.3454 | 1 | 0.6334 | 1 | 0.7978 | 1 | 0.7202 | 1 | 0.8075 | 1 | 0.8497 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Chou, C.-C.; Dang, T.-T.; Nguyen, H.-P.; Nguyen, N.-A.-T. Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach. Processes 2022, 10, 889. https://doi.org/10.3390/pr10050889
Wang C-N, Chou C-C, Dang T-T, Nguyen H-P, Nguyen N-A-T. Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach. Processes. 2022; 10(5):889. https://doi.org/10.3390/pr10050889
Chicago/Turabian StyleWang, Chia-Nan, Chien-Chang Chou, Thanh-Tuan Dang, Hoang-Phu Nguyen, and Ngoc-Ai-Thy Nguyen. 2022. "Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach" Processes 10, no. 5: 889. https://doi.org/10.3390/pr10050889
APA StyleWang, C. -N., Chou, C. -C., Dang, T. -T., Nguyen, H. -P., & Nguyen, N. -A. -T. (2022). Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach. Processes, 10(5), 889. https://doi.org/10.3390/pr10050889