Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review
Abstract
:1. Introduction
2. Formation Mechanisms of Satellite Droplets
2.1. Dimension Analysis of the Inkjet Printing
2.2. Satellite Formation during DOD Inkjet Printing
3. Satellite Droplets Elimination Strategies
3.1. Recollected by the Main Droplets or by Adjacent Satellite
3.2. Tuning of the Pressure Pulse in the Chamber (Waveform Applied on the Piezo)
3.3. Addition of Surfactants to the Ink
3.4. Addition of Polymer to the Ink
3.5. Adoption of Super-Ink-Phobic Nozzles Plate
4. Satellite Droplets Utilizing Strategies
4.1. Satellite Droplets Printing
4.2. Daughter Droplets Printing (Inkjet Printing in the Liquid Environment)
5. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stevenson, D.J. Origin of the moon-The collision hypothesis. Annu. Rev. Earth Planet. Sci. 1987, 15, 271–315. [Google Scholar] [CrossRef]
- Cameron, A.; Benz, W. The origin of the Moon and the single impact hypothesis IV. Icarus 1991, 92, 204–216. [Google Scholar] [CrossRef]
- Zhang, F.H.; Li, E.Q.; Thoroddsen, S.T. Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 2009, 102, 104502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, K.; Chou, P.; Tseng, Y. Binary droplet collision at high Weber number. Phys. Rev. E 2009, 80, 36301. [Google Scholar] [CrossRef] [PubMed]
- Brenn, G.; Kolobaric, V. Satellite droplet formation by unstable binary drop collisions. Phys. Fluids 2006, 18, 87101. [Google Scholar] [CrossRef]
- Brenn, G.; Valkovska, D.; Danov, K.D. The formation of satellite droplets by unstable binary drop collisions. Phys. Fluids 2001, 13, 2463–2477. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Zhang, P.; Law, C.K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets. Phys. Fluids 2012, 24, 22101. [Google Scholar] [CrossRef]
- Rein, M. The transitional regime between coalescing and splashing drops. J. Fluid Mech. 1996, 306, 145–165. [Google Scholar] [CrossRef]
- Blanchette, F.; Bigioni, T.P. Partial coalescence of drops at liquid interfaces. Nat. Phys. 2006, 2, 254–257. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Takehara, K. The coalescence cascade of a drop. Phys. Fluids 2000, 12, 1265–1267. [Google Scholar] [CrossRef]
- Charles, G.E.; Mason, S.G. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 1960, 15, 105–122. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.W.; Nagel, S.R. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 2005, 94, 184505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josserand, C.; Zaleski, S. Droplet splashing on a thin liquid film. Phys. Fluids 2003, 15, 1650–1657. [Google Scholar] [CrossRef]
- Savart, F. Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. Chim. 1833, 54, 1833. [Google Scholar]
- Lenard, P. Ueber die schwingungen fallender tropfen. Ann. Phys. 1887, 266, 209–243. [Google Scholar] [CrossRef] [Green Version]
- van der Bos, A.; van der Meulen, M.; Driessen, T.; van den Berg, M.; Reinten, H.; Wijshoff, H.; Versluis, M.; Lohse, D. Velocity profile inside piezoacoustic inkjet droplets in flight: Comparison between experiment and numerical simulation. Phys. Rev. Appl. 2014, 1, 14004. [Google Scholar] [CrossRef]
- Shan, J.W.; Lang, D.B.; Dimotakis, P.E. Scalar concentration measurements in liquid-phase flows with pulsed lasers. Exp. Fluids 2004, 36, 268–273. [Google Scholar] [CrossRef]
- van der Bos, A.; Zijlstra, A.; Gelderblom, E.; Versluis, M. iLIF: Illumination by Laser-Induced Fluorescence for single flash imaging on a nanoseconds timescale. Exp. Fluids 2011, 51, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Duineveld, P.C.; De Kok, M.M.; Buechel, M.; Sempel, A.; Mutsaers, K.A.; Van de Weijer, P.; Camps, I.G.; Van de Biggelaar, T.; Rubingh, J.J.; Haskal, E.I. Ink-Jet Printing of Polymer Light-Emitting Devices. In Proceedings of the Organic Light-Emitting Materials and Devices V, San Diego, CA, USA, 29 July–3 August 2001; SPIE: Bellingham, WA, USA, 2002; pp. 59–67. [Google Scholar]
- Kang, S.; Kim, S.; Sohn, D.K.; Ko, H.S. Analysis of drop-on-demand piezo inkjet performance. Phys. Fluids 2020, 32, 22007. [Google Scholar] [CrossRef]
- Stow, C.D.; Hadfield, M.G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. London. A Math. Phys. Sci. 1981, 373, 419–441. [Google Scholar]
- Bhola, R.; Chandra, S. Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci. 1999, 34, 4883–4894. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [Google Scholar] [CrossRef]
- Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation. MRS Online Proc. Libr. (OPL) 2000, 625, 117. [Google Scholar] [CrossRef]
- Tai, J.; Gan, H.Y.; Liang, Y.N.; Lok, B.K. Control of droplet formation in inkjet printing using Ohnesorge number category: Materials and processes. In Proceedings of the 2008 10th Electronics Packaging Technology Conference, Singapore, 9–12 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 761–766. [Google Scholar]
- Yang, Q.; Li, H.; Li, M.; Li, Y.; Chen, S.; Bao, B.; Song, Y. Rayleigh instability-assisted satellite droplets elimination in inkjet printing. ACS Appl. Mater. Interfaces 2017, 9, 41521–41528. [Google Scholar] [CrossRef] [PubMed]
- Fromm, J.E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 1984, 28, 322–333. [Google Scholar] [CrossRef]
- McKinley, G.H.; Renardy, M. Wolfgang von ohnesorge. Phys. Fluids 2011, 23, 127101. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Carr, W.W.; Morris, J.F. An experimental study of drop-on-demand drop formation. Phys. Fluids 2006, 18, 72102. [Google Scholar] [CrossRef]
- Wijshoff, H. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 2010, 491, 77–177. [Google Scholar] [CrossRef]
- Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 1997, 69, 865. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, D.T. On the breakup of viscous liquid threads. Phys. Fluids 1995, 7, 1529–1544. [Google Scholar] [CrossRef] [Green Version]
- Notz, P.K.; Basaran, O.A. Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 2004, 512, 223–256. [Google Scholar] [CrossRef]
- Xu, Q.; Basaran, O.A. Computational analysis of drop-on-demand drop formation. Phys. Fluids 2007, 19, 102111. [Google Scholar] [CrossRef]
- Day, R.F.; Hinch, E.J.; Lister, J.R. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 1998, 80, 704. [Google Scholar] [CrossRef] [Green Version]
- Mansour, N.N.; Lundgren, T.S. Satellite formation in capillary jet breakup. Phys. Fluids A Fluid Dyn. 1990, 2, 1141–1144. [Google Scholar] [CrossRef]
- Baker, G.R.; Meiron, D.I.; Orszag, S.A. Boundary integral methods for axisymmetric and three-dimensional Rayleigh-Taylor instability problems. Phys. D Nonlinear Phenom. 1984, 12, 19–31. [Google Scholar] [CrossRef]
- Pozrikidis, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 1993, 71, 3458. [Google Scholar] [CrossRef]
- Brenner, M.P.; Lister, J.R.; Stone, H.A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 1996, 8, 2827–2836. [Google Scholar] [CrossRef]
- Castrejón-Pita, J.R.; Castrejón-Pita, A.A.; Hinch, E.J.; Lister, J.R.; Hutchings, I.M. Self-similar breakup of near-inviscid liquids. Phys. Rev. E 2012, 86, 15301. [Google Scholar] [CrossRef] [Green Version]
- Fraters, A.; Jeurissen, R.; van den Berg, M.; Reinten, H.; Wijshoff, H.; Lohse, D.; Versluis, M.; Segers, T. Secondary tail formation and breakup in piezoacoustic inkjet printing: Femtoliter droplets captured in flight. Phys. Rev. Appl. 2020, 13, 24075. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.D.; Brenner, M.P.; Nagel, S.R. A Cascade of Structure in a Drop Falling from a Faucet. Science 1994, 265, 219–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.D.; Nagel, S.R.; Brenner, M.P. Iterated Instabilities during Droplet Fission. Phys. Rev. Lett. 1994, 73, 3391–3394. [Google Scholar] [CrossRef]
- Dijksman, J.F. Hydrodynamics of small tubular pumps. J. Fluid Mech. 1984, 139, 173–191. [Google Scholar] [CrossRef]
- Furlani, E.P.; Price, B.G.; Hawkins, G.; Lopez, A.G. Thermally induced Marangoni instability of liquid microjets with application to continuous inkjet printing. In Proceedings of the NSTI Nanotechnology Conference, Boston, MA, USA, 7–11 May 2006. [Google Scholar]
- Hu, Z.; Li, S.; Yang, F.; Lin, X.; Pan, S.; Huang, X.; Xu, J. Formation and Elimination of Satellite Droplets during Monodisperse Droplet Generation by Using Piezoelectric Method. Micromachines 2021, 12, 921. [Google Scholar] [CrossRef]
- Chen, A.U.; Basaran, O.A. A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 2002, 14, L1–L4. [Google Scholar] [CrossRef]
- Riefler, N.; Wriedt, T. Generation of monodisperse micron-sized droplets using free adjustable signals. Part. Part. Syst. Charact. 2008, 25, 176–182. [Google Scholar] [CrossRef]
- de Jong, J.; Reinten, H.; Wijshoff, H.; van den Berg, M.; Delescen, K.; van Dongen, R.; Mugele, F.; Versluis, M.; Lohse, D. Marangoni flow on an inkjet nozzle plate. Appl. Phys. Lett. 2007, 91, 204102. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Duan, F.; Hou, Y.; Zhong, X. Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Adv. Colloid Interface Sci. 2020, 275, 102049. [Google Scholar] [CrossRef]
- Kim, D.; Rokoni, A.; Kaneelil, P.; Cui, C.; Han, L.; Sun, Y. Role of Surfactant in Evaporation and Deposition of Bisolvent Biopolymer Droplets. Langmuir 2019, 35, 12773–12781. [Google Scholar] [CrossRef]
- Eom, S.H.; Senthilarasu, S.; Uthirakumar, P.; Yoon, S.C.; Lim, J.; Lee, C.; Lim, H.S.; Lee, J.; Lee, S. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org. Electron. 2009, 10, 536–542. [Google Scholar] [CrossRef]
- Sarchahi, H.; Maghrebi, M.; Baniadam, M. Inkjet printing of carbon nanotubes (CNTs) with a binary surfactant mixture: The effect of the nonionic surfactant on the uniformity of the printed surface. Diam. Relat. Mater. 2019, 100, 107550–107562. [Google Scholar]
- Venditti, G.; Murali, V.; Darhuber, A.A. Inkjet printing of surfactant solutions onto thin moving porous media. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127832. [Google Scholar] [CrossRef]
- Hanyak, M.; Darhuber, A.A.; Ren, M. Surfactant-induced delay of leveling of inkjet-printed patterns. J. Appl. Phys. 2011, 109, 74905. [Google Scholar] [CrossRef]
- Kamarudin, S.F.; Jaafar, M.; Abd Manaf, A.; Takamura, Y.; Masuda, T.; Yumoto, Y. Performance Enhancement of Inkjet Printed Multi-Walled Carbon Nanotubes Inks using Synthetic and Green Surfactants. Adv. Mater. Technol. 2021, 6, 2001026. [Google Scholar] [CrossRef]
- Franses, E.I.; Basaran, O.A.; Chang, C. Techniques to measure dynamic surface tension. Curr. Opin. Colloid Interface Sci. 1996, 1, 296–303. [Google Scholar] [CrossRef]
- Zhang, X.; Harris, M.T.; Basaran, O.A. Measurement of dynamic surface tension by a growing drop technique. J. Colloid. Interface Sci. 1994, 168, 47–60. [Google Scholar] [CrossRef]
- Basaran, O.A.; DePaoli, D.W. Nonlinear oscillations of pendant drops. Phys. Fluids 1994, 6, 2923–2943. [Google Scholar] [CrossRef]
- Zhang, X.; Basaran, O.A. An experimental study of dynamics of drop formation. Phys. Fluids 1995, 7, 1184–1203. [Google Scholar] [CrossRef]
- Javadi, A.; Krägel, J.; Pandolfini, P.; Loglio, G.; Kovalchuk, V.I.; Aksenenko, E.V.; Ravera, F.; Liggieri, L.; Miller, R. Short time dynamic interfacial tension as studied by the growing drop capillary pressure technique. Colloids Surf. A Physicochem. Eng. Asp. 2010, 365, 62–69. [Google Scholar] [CrossRef]
- Schmid, C. Formulation and properties of waterborne inkjet inks. In The Chemistry of Inkjet Inks; Publishing Co. Pte. Ltd.: Singapore, 2009; pp. 123–140. [Google Scholar]
- Kamat, P.M.; Wagoner, B.W.; Castrejón-Pita, A.A.; Castrejón-Pita, J.R.; Anthony, C.R.; Basaran, O.A. Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments. J. Fluid Mech. 2020, 899, A28. [Google Scholar] [CrossRef]
- Yang, L.; Bain, C.D. Liquid jet instability and dynamic surface tension effect on breakup. In Proceedings of the NIP & Digital Fabrication Conference, Springfield, VA, USA, 2009; Society for Imaging Science and Technology, 2009; pp. 79–82. [Google Scholar]
- Kamat, P.M.; Wagoner, B.W.; Thete, S.S.; Basaran, O.A. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 2018, 3, 43602. [Google Scholar] [CrossRef]
- Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta 2010, 49, 619–632. [Google Scholar] [CrossRef]
- Bazilevskii, A.V.; Meyer, J.D.; Rozhkov, A.N. Dynamics and breakup of pulse microjets of polymeric liquids. Fluid Dyn. 2005, 40, 376–392. [Google Scholar] [CrossRef]
- Chilcott, M.D.; Rallison, J.M. Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newton. Fluid Mech. 1988, 29, 381–432. [Google Scholar] [CrossRef]
- De Gans, B.J.; Duineveld, P.C.; Schubert, U.S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Goldin, M.; Yerushalmi, J.; Pfeffer, R.; Shinnar, R. Breakup of a laminar capillary jet of a viscoelastic fluid. J. Fluid Mech. 1969, 38, 689–711. [Google Scholar] [CrossRef]
- Hoath, S.D.; Hutchings, I.M.; Martin, G.D.; Tuladhar, T.R.; Mackley, M.R.; Vadillo, D. Links between ink rheology, drop-on-demand jet formation, and printability. J. Imaging Sci. Technol. 2009, 53, 41208. [Google Scholar]
- Shore, H.J.; Harrison, G.M. The effect of added polymers on the formation of drops ejected from a nozzle. Phys. Fluids 2005, 17, 33104. [Google Scholar] [CrossRef]
- Tuladhar, T.R.; Mackley, M.R. Filament stretching rheometry and breakup behaviour of low viscosity polymer solutions and inkjet fluids. J. Non-Newton. Fluid Mech. 2008, 148, 97–108. [Google Scholar] [CrossRef]
- Entov, V.M.; Hinch, E.J. Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J. Non-Newton. Fluid Mech. 1997, 72, 31–53. [Google Scholar] [CrossRef]
- Meyer, J.D.; Bazilevsky, A.V.; Rozhkov, A.N. Effects of polymeric additives on thermal ink jets. Seattle, WA 1997. [Google Scholar]
- Hoath, S.D.; Harlen, O.G.; Hutchings, I.M. Jetting behavior of polymer solutions in drop-on-demand inkjet printing. J. Rheol. 2012, 56, 1109–1127. [Google Scholar] [CrossRef] [Green Version]
- Hoath, S.D.; Jung, S.; Hsiao, W.; Hutchings, I.M. How PEDOT: PSS solutions produce satellite-free inkjets. Org. Electron. 2012, 13, 3259–3262. [Google Scholar] [CrossRef] [Green Version]
- Clasen, C.; Eggers, J.; Fontelos, M.A.; Li, J.; McKinley, G.H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 2006, 556, 283–308. [Google Scholar] [CrossRef] [Green Version]
- Clasen, C.; Phillips, P.M.; Palangetic, L.; Vermant, A.J. Dispensing of rheologically complex fluids: The map of misery. AIChE J. 2012, 58, 3242–3255. [Google Scholar] [CrossRef]
- Song, Y.; Fang, K.; Ren, Y.; Tang, Z.; Wang, R.; Chen, W.; Xie, R.; Shi, Z.; Hao, L. Inkjet printable and self-curable disperse dyes/P (St-BA-MAA) nanosphere inks for both hydrophilic and hydrophobic fabrics. Polymers 2018, 10, 1402. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Ma, J.; Jiang, L. Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles. ACS Nano 2013, 7, 10371–10379. [Google Scholar] [CrossRef]
- Fagerquist, R.L.; Yang, Q. Continuous Ink Jet Printing with Satellite Droplets. U.S. Patent US20070291058A1, 20 December 2007. [Google Scholar]
- Zhang, Y.; Li, D.; Liu, Y.; Wittstock, G. Printing with Satellite Droplets. Small 2018, 14, 1802583. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, B.; Wittstock, G.; Li, D.; Liu, Y.; Zhang, X. Generating ultra-small droplets based on a double-orifice technique. Sens. Actuators B Chem. 2018, 255, 2011–2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, B.; Liu, Y.; Wittstock, G. Hydrodynamic dispensing and electrical manipulation of attolitre droplets. Nat. Commun. 2016, 7, 12424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Liu, Y.; Wittstock, G. Inkjet Printing in Liquid Environments. Small 2018, 14, 1801212. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, H.; Yang, G.; Wang, J.; Huang, B.; Wu, X.; Sun, Q.; Ma, C.; Liu, Y.; Zhang, Y. Subharmonic resonance and antiresonance characteristics for high-frequency confined interface vibration inkjet printing. Phys. Fluids 2022, 34, 32104. [Google Scholar] [CrossRef]
- Li, D.; Huang, B.; Cao, Y.; Han, M.; Wu, X.; Sun, Q.; Ma, C.; Zhao, L.; Liu, P.; Zheng, C. Confined interface vibration for femtoliter droplets generation and manipulation. Nano Sel. 2021, 2, 338–345. [Google Scholar] [CrossRef]
- Lohse, D. Fundamental Fluid Dynamics Challenges in Inkjet Printing. Annu. Rev. Fluid Mech. 2022, 54, 349–382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, G.; Liu, Y.; Wang, J.; Yang, G.; Li, D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes 2022, 10, 932. https://doi.org/10.3390/pr10050932
Zhang Y, Hu G, Liu Y, Wang J, Yang G, Li D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes. 2022; 10(5):932. https://doi.org/10.3390/pr10050932
Chicago/Turabian StyleZhang, Yanzhen, Guofang Hu, Yonghong Liu, Jide Wang, Guodong Yang, and Dege Li. 2022. "Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review" Processes 10, no. 5: 932. https://doi.org/10.3390/pr10050932
APA StyleZhang, Y., Hu, G., Liu, Y., Wang, J., Yang, G., & Li, D. (2022). Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes, 10(5), 932. https://doi.org/10.3390/pr10050932