Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed
Abstract
:1. Introduction
2. Theoretical Background
2.1. Spline-Kernelled Chirplet Transform (SCT)
- (1)
- The signal is rotated in the time-frequency plane by increasing the instantaneous frequency of ;
- (2)
- By increasing the frequency of at , the signal is shifted in the time-frequency plane;
- (3)
- The signal is processed by short-time Fourier transform (STFT), and the window is .
2.2. Instantaneous Frequency Estimation Based on Analytic Signal Analysis Method
2.3. Order Analysis Method Based on SCT and ACMP
2.4. Extreme Gradient Boosting (XGBoost)
3. Piston Pump Degradation Test Verification at Variable Rotating Speed
3.1. Design of Degradation Test
3.2. Establishment of Degradation Test Bench
3.3. Data Analysis of Axial Piston Pump
4. Degradation State Recognition of Piston Pump
4.1. Extraction of Feature Parameters
4.1.1. Characteristic Parameters in Angular Domain
4.1.2. Characteristic Parameters in Order Domain
4.2. Pattern Recognition of Degradation States
4.2.1. Parameters Optimization of Model
4.2.2. Recognition Results and Analysis
5. Conclusions
- The combined method of ACMP and SCT has obvious advantages in dealing with unstable and high-noise vibration signals at variable rotating speeds. Meanwhile, this method also solves the issue of frequency ambiguity, improves the decomposition efficiency, accurately decomposes the signal mode, and extracts the instantaneous frequency of the axial piston pump.
- With the increase of the wear degree of the valve plate, the order spectrum amplitude and the order domain energy of the axial piston pump show a clear increasing trend, which proves that the signals processed based on ACMP and SCT conform to the actual situation and have high accuracy.
- The average recognition accuracy of the valve plate wear state of the axial piston pump based on ACMP, SCT, and XGBoost is 99.1%. Compared with ANN, GBDT, and SVM algorithms, XGBoost identifies four different wear states better and saves computing time, which highlights the advantages of XGBoost after parameter optimization in pattern recognition.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Tao, J.-F.; Huang, Y.-X.; Liu, C.-L. Internal leakage detection of hydraulic cylinder based on BP neural network. Chin. Hydraul. Pneum. 2017, 11–15. [Google Scholar]
- Wang, F.-S. Development status and test platform construction of high pressure hydraulic components in China. Constr. Mach. Equip. 2012, 43, 1–7. [Google Scholar]
- Yang, T.-L.; Gao, Y.-J.; Kong, X.-D. Fault diagnosis method of piston pump based on wavelet transform. J. Mech. Eng. 2005, 41, 112–116. [Google Scholar] [CrossRef]
- Barszcz, T.; Randall, R.B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mech. Syst. Signal Process. 2009, 23, 1352–1365. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.X.; Yan, R. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mech. Syst. Signal Process. 2014, 46, 28–44. [Google Scholar] [CrossRef]
- Al-Regib, E.; Ni, J.; Lee, S.-H. Programming spindle speed variation for machine tool chatter suppression. Int. J. Mach. Tools Manuf. 2003, 43, 1229–1240. [Google Scholar] [CrossRef]
- Yang, L.-J.; Zang, B.-H.; Ye, X.-Z. Fast Fourier transform and its applications. Opto-Electron. Eng. 2004, 31 (Suppl. S1), 1–3+7. [Google Scholar]
- Ren, Y.; Li, W.; Zhu, Z.; Tong, Z.; Zhou, G. A new fault feature for rolling bearing fault diagnosis under varying speed conditions. Adv. Mech. Eng. 2017, 9, 1687814017703897. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Cheng, W.; Wen, W. Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method. Procedia Manuf. 2020, 49, 166–172. [Google Scholar] [CrossRef]
- Wang, L.-H.; Zhao, X.-P.; Wu, J.-X.; Xie, Y.-Y.; Zhang, Y.-H. Motor fault diagnosis based on short-time Fourier transform and convolutional neural network. Chin. J. Mech. Eng. 2017, 30, 1357–1368. [Google Scholar] [CrossRef]
- Wang, J.; Du, G.; Zhu, Z.; Shen, C.; He, Q. Fault diagnosis of rotating machines based on the EMD manifold. Mech. Syst. Signal Process. 2020, 135, 106443. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Ma, J. Rolling bearing fault diagnosis based on STFT-deep learning and sound signals. Shock Vib. 2016, 2016, 6127479. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, P.; González, J. New revolution-order transform for analysing non-stationary vibrations. Insight-Non-Destr. Test. Cond. Monit. 2005, 47, 29–35. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Wang, J.; Huang, H.-A. Fault diagnosis of planetary gearboxes based on NLSTFT order tracking under variable speed conditions. China Mech. Eng. 2018, 29, 1688–1695. [Google Scholar]
- Goharrizi, A.Y.; Sepehri, N. A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators. IEEE Trans. Ind. Electron. 2009, 57, 1755–1763. [Google Scholar] [CrossRef]
- Wu, J.; Ke, Z.-X.; Li, N.; Jiang, T.; Huang, W.-G. Fault identification of variable speed gearbox based on wavelet transform. Coal Mine Mach. 2018, 39, 149–151. [Google Scholar]
- Khadem, S.; Rezaee, M. Development of vibration signature analysis using multiwavelet systems. J. Sound Vib. 2003, 261, 613–633. [Google Scholar] [CrossRef]
- Yin, X.-Z.; Yu, S.-L. Time frequency analysis theory and its application. Mod. Electron. Tech. 2006, 29, 118–120. [Google Scholar]
- Wen, L.; Liu, Z.-S.; Ge, Y.-J. Several methods of wavelet denoising. J. Hefei Univ. Technol. (Nat. Sci.) 2002, 25, 167–172. [Google Scholar]
- Si, L.; Wang, Z.; Liu, X.; Tan, C. A sensing identification method for shearer cutting state based on modified multi-scale fuzzy entropy and support vector machine. Eng. Appl. Artif. Intell. 2019, 78, 86–101. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, S. Multitask multiclass support vector machines: Model and experiments. Pattern Recognit. 2013, 46, 914–924. [Google Scholar] [CrossRef]
- Azadeh, A.; Saberi, M.; Kazem, A.; Ebrahimipour, V.; Nourmohammadzadeh, A.; Saberi, Z. A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Appl. Soft Comput. 2013, 13, 1478–1485. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Verma, K.; Niazi, K.; Fozdar, M. Real-time monitoring of post-fault scenario for determining generator coherency and transient stability through ANN. IEEE Trans. Ind. Appl. 2017, 54, 685–692. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, N.; Guo, H.; Wang, X. An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network. Eng. Appl. Artif. Intell. 2020, 94, 103765. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 2018, 313, 47–64. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, J.; Zhong, Y.; Tang, H. A data indicator-based deep belief networks to detect multiple faults in axial piston pumps. Mech. Syst. Signal Process. 2018, 112, 154–170. [Google Scholar] [CrossRef]
- Zang, X.-S.; Lin, M. Wavelet transform and analysis of intrapulse modulation characteristics of linear frequency modulation signal. Sci. Technol. Eng. 2012, 12, 9840–9844+9855. [Google Scholar]
- Yang, Y.; Peng, Z.; Meng, G.; Zhang, W. Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application. IEEE Trans. Ind. Electron. 2011, 59, 1612–1621. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Peng, Z.; Dong, X.; Zhang, W.; Meng, G. Adaptive chirp mode pursuit: Algorithm and applications. Mech. Syst. Signal Process. 2019, 116, 566–584. [Google Scholar] [CrossRef]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Wan, D.-A.; Sun, D.-J.; Zhao, Y.-J. Synchronous revolution order analysis applicationin fault diagnosis of auto gearbox. Comput. Meas. Control 2006, 14, 299–300, 332. [Google Scholar]
- Wang, L.; Zhou, D.; Zhang, H.; Zhang, W.; Chen, J. Application of relative entropy and gradient boosting decision tree to fault prognosis in electronic circuits. Symmetry 2018, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X.; Jung, Y.; Abedi, V.; Zand, R.; Bikak, M.; Adibuzzaman, M. Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost. Physiol. Meas. 2018, 39, 104006. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, J.M. Fractal dimension and logarithmic loss unpredictability. Theor. Comput. Sci. 2003, 304, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
Wear States | Wear Loss | Rotational Speed Variation | Test Pressure (MPa) |
---|---|---|---|
zero wear | 0 mm | deceleration | 10 |
mild wear | 0.0432 mm | deceleration | 10 |
moderate wear | 0.1248 mm | deceleration | 10 |
severe wear | 0.4661 mm | deceleration | 10 |
Model Number | Number of Pistons | Theoretical Displacement | Rated Pressure |
---|---|---|---|
10MCY14-1B | 7 | 10 mL/r | 31.5 MPa |
Degradation States | Degradation Feature Parameters of The Samples | Label | |||||||
---|---|---|---|---|---|---|---|---|---|
zero state | 17.5143 | 254.8358 | 34.3117 | 0.2943 | 0.0847 | 0.0500 | 0.0298 | 0.0212 | 1 |
17.0268 | 259.6160 | 30.4657 | 0.3278 | 0.0865 | 0.0769 | 0.0265 | 0.0208 | 1 | |
17.6276 | 241.1742 | 37.9160 | 0.2407 | 0.0698 | 0.0532 | 0.0367 | 0.0174 | 1 | |
17.2683 | 261.2015 | 32.2628 | 0.3097 | 0.0975 | 0.0671 | 0.0111 | 0.0367 | 1 | |
17.4314 | 259.1114 | 33.1784 | 0.2991 | 0.0967 | 0.0954 | 0.0104 | 0.0079 | 1 | |
mild wear | 12.9107 | 195.3979 | 24.4784 | 0.3316 | 0.0877 | 0.0667 | 0.0374 | 0.0172 | 2 |
12.5098 | 211.0776 | 22.1202 | 0.3580 | 0.0876 | 0.0643 | 0.0486 | 0.0123 | 2 | |
13.0235 | 189.0926 | 26.0609 | 0.3297 | 0.0799 | 0.0793 | 0.0376 | 0.0109 | 2 | |
12.7630 | 193.2093 | 24.5660 | 0.3436 | 0.0707 | 0.0621 | 0.0291 | 0.0215 | 2 | |
12.8913 | 194.7280 | 24.4312 | 0.3371 | 0.0782 | 0.0598 | 0.0359 | 0.0188 | 2 | |
moderate wear | 11.1787 | 228.7917 | 14.0893 | 0.6974 | 0.1482 | 0.1591 | 0.0298 | 0.0635 | 3 |
10.7528 | 249.2090 | 12.2644 | 0.8239 | 0.1276 | 0.1689 | 0.1055 | 0.0987 | 3 | |
11.5477 | 210.8446 | 15.8551 | 0.6122 | 0.2690 | 0.1542 | 0.0965 | 0.0543 | 3 | |
11.0072 | 241.7709 | 13.0180 | 0.7909 | 0.1098 | 0.1778 | 0.1478 | 0.1214 | 3 | |
11.1132 | 228.4637 | 14.0665 | 0.7023 | 0.1725 | 0.1161 | 0.0571 | 0.0513 | 3 | |
severe wear | 7.5224 | 247.6851 | 6.5347 | 1.0712 | 0.3681 | 0.2663 | 0.1156 | 0.1074 | 4 |
7.2278 | 271.0355 | 6.2371 | 1.7685 | 0.2861 | 0.3791 | 0.7120 | 0.1899 | 4 | |
7.7621 | 229.8977 | 6.6778 | 0.9976 | 0.5876 | 0.2003 | 0.1485 | 0.2358 | 4 | |
7.3447 | 258.1544 | 6.3316 | 1.2907 | 0.4760 | 0.3123 | 0.3760 | 0.1010 | 4 | |
7.4752 | 247.9941 | 6.4727 | 1.1439 | 0.5523 | 0.1796 | 0.1147 | 0.2259 | 4 |
Parameters | Numerical Value |
---|---|
max depth | 3 |
min child weight | 1 |
number of trees | 54 |
learning rate | 0.1 |
objective | multi: softmax |
number of categories | 4 |
Classification Method | Average Recognition Accuracy | Mean Decision Time (s) |
---|---|---|
ANN | 0.963 | 0.094 |
SVM | 0.989 | 0.029 |
GBDT | 0.986 | 0.021 |
XGBoost | 0.991 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Liu, Y.; Zhao, Z.; Zhao, J.; Wang, J.; Cai, W. Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed. Processes 2022, 10, 1078. https://doi.org/10.3390/pr10061078
Guo R, Liu Y, Zhao Z, Zhao J, Wang J, Cai W. Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed. Processes. 2022; 10(6):1078. https://doi.org/10.3390/pr10061078
Chicago/Turabian StyleGuo, Rui, Yingtang Liu, Zhiqian Zhao, Jingyi Zhao, Jianwei Wang, and Wei Cai. 2022. "Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed" Processes 10, no. 6: 1078. https://doi.org/10.3390/pr10061078
APA StyleGuo, R., Liu, Y., Zhao, Z., Zhao, J., Wang, J., & Cai, W. (2022). Research on Degradation State Recognition of Axial Piston Pump under Variable Rotating Speed. Processes, 10(6), 1078. https://doi.org/10.3390/pr10061078