A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters
Abstract
:1. Introduction
- A multi-parameter-based health condition monitoring approach covers the equivalent series resistance, impedance, loss factor, and quality factor. These selected electrical parameters have shown a better paradigm for the degradation of electrolytic capacitors.
- A more robust data acquisition technique involving the HIOKI 3536 industry standard for wide application is aided by a software application to control and set the required measurement conditions for each capacitor.
- A robust feature engineering approach using a statistical time-domain feature extraction approach for each capacitor data-set (D, Rs, Q, Z) and a correlation-based feature selection. This approach has helped select the best features and reduction process and not forget the critical concept of data preprocessing techniques that require data wrangling, reshaping, normalization, and cleaning.
- A machine learning-based algorithm set was selected to train and test the new data set. Due to the nature of the data size and how the data were acquired, the befitting models for these were the ML-classifier models.
2. Motivation, Literature and Related Works
3. Theoretical Backgrounds
3.1. Working Description for AEC in SMPS
- The S in SMPS stands for switching, which denotes varying voltage continuously.
- The output voltage is controlled by the switching time effect, which is dependent on the feedback circuitry
- The design efficiency is high because instead of releasing the excess power from the SMPS as heat, it tends to continuously regulate the input(using the switching device) to control the output
3.2. Degradation Mechanism of an Aluminum Electrolytic Capacitors
3.3. Overview of Machine Learning-Based Algorithms
4. Proposed Integrated Feature Engineering and ML-Based Methods
5. Data Acquisition Process
5.1. Experimental Test Bench
- USB Communication Selection—This window showcase the selection process for the correct USB port for the connection between the computer, software and the equipment. Once there is no synchronization between the System, the equipment will not proceed with the data collection process.
- System—Setting up the equipment system covers the measurement type 1–4 with the necessary parameters. The level mode has the option for constant voltage (CV), constant current (CC) and open-circuit voltage (V). The latter was selected during the experimental procedure to achieve a varying voltage across the DUT. The AC speed was selected for the SLOW2 option to provide the slowest and high accuracy for the DUT parameters selected. The Low Z mode on the dashboard provides a high precision when set ON for capacitors with high capacitance above 100 uf. The Ac auto range is kept On to provide an automatic range for the DUT. The Limit (A) is set off to not interfere with the current generated during the DUT test procedure.
- Fix Function—The set of frequency (Hz), DC Bias (V), and AC level (V) are set to fix the value. The sampling delay function is needed to enter the delay needed during measurement. However, for capacitor measurement, we do not need this function. The sampling mode function consists of the infinite mode (na), finite (Ea) and Timer(sec). The infinite mode was selected during the experiment to achieve a continuous measurement until the frequency set is reached.
- DC Sweep—These functions consist of the DC bias start voltage, DS-Frequency (Hz), Dc Bias Stop (v), DS-AC level (V), DC Bias Step Voltage, and DS-Delay (sec). The start and stop voltage were set to 1 volt and 5 volts, respectively, while the step voltage was set to 0.01 volts which means there would be an increase during the measurement in the order 0.01, 0.02, 0.03 till the set stop voltage.
- Frequency Sweep—This covers the frequency start, stop and step, which were set to 10, 8 MHz and ten, respectively.
- Operation Start and Stop—This section covers the reset, setup, run, stop, and the close button, which aids the measurement parameter settings and program end button.
- Graph Buffer Size—From this section, you can easily manoeuvre between the two graph windows and view the run and stop the display. Also, select the preferred parameter (Y-axis) for each graph and the x-axis section, which could be frequency, and the number of samples.
- Measured Data—This section displays in rows and columns the measured data from the DUT.
- Measured Data Plot—This section plots the graph for the first two selected parameters with both on the y axis (left and right) with a common x-axis.
- Graph Setting—This section gives room for adjustment and controls to the graph section, which could help in quick visualization while the experiment is ongoing.
Equivalent Circuit Mode and LCR Meter Measurement Circuit—The Four Terminal Pair Method
5.2. Experimental Data Visualization
6. Diagnostics Assessment and Discussion
6.1. Selected Algorithm Parameters
6.2. Machine Learning Assessment Evaluation
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Choi, J.-H.; Kim, N.H. Challenges and Opportunities of System-Level Prognostics. Sensors 2021, 21, 7655. [Google Scholar] [CrossRef] [PubMed]
- Akpudo, U.E.; Hur, J.-W. Investigating the Efficiencies of Fusion Algorithms for Accurate Equipment Monitoring and Prognostics. Energies 2022, 15, 2204. [Google Scholar] [CrossRef]
- Cofre-Martel, S.; Lopez Droguett, E.; Modarres, M. Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management. Sensors 2021, 21, 6841. [Google Scholar] [CrossRef] [PubMed]
- Falck, J.; Felgemacher, C.; Rojko, A.; Liserre, M.; Zacharias, P. Reliability of Power Electronic Systems: An Industry Perspective. IEEE Ind. Electron. Mag. 2018, 12, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gao, Z.; Cao, L.; Dong, F.; Zou, Y.; Wang, K.; Zhang, Y.; Sun, P. Marine Systems and Equipment Prognostics and Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy. Machines 2022, 10, 72. [Google Scholar] [CrossRef]
- Pellitteri, F.; Di Dio, V.; Puccio, C.; Miceli, R. A Model of DC-DC Converter with Switched-Capacitor Structure for Electric Vehicle Applications. Energies 2022, 15, 1224. [Google Scholar] [CrossRef]
- Omid, H.; Yaser, D. Reliability modelling of capacitor voltage transformer using proposed Markov model. Electric Power Syst. Res. 2022, 202, 107573. [Google Scholar] [CrossRef]
- Summer, F.; Torop, J.; Aabloo, A.; Kyritsakis, A.; Zadin, V. Particle Dynamics-Based Stochastic Modeling of Carbon Particle Charging in the Flow Capacitor Systems. Appl. Sci. 2022, 12, 1887. [Google Scholar] [CrossRef]
- Bi, K. A Model Predictive Controlled Bidirectional Four Quadrant Flying Capacitor DC/DC Converter Applied in Energy Storage System. IEEE Trans. Power Electron. 2022, 37, 7705–7717. [Google Scholar] [CrossRef]
- Mcgrew, T.; Sysoeva, C.V.; Cheng, H.; Miller, C.; Scofield, J.; Scott, M.J. Condition Monitoring of DC-Link Capacitors using Time-Frequency Analysis and Machine Learning Classification of Conducted EMI. IEEE Trans. Power Electron. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, C.; Gao, F.; Song, T.; Tang, Y.; Zhu, X. Motor Driver-Based Topology of Integrated On-Board Charging System and Data-Driven Inductance Identification Method. IEEE J. Emerg. Sel. Top. Circuits Syst. 2022, 12, 310–319. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Xue, X.; Chen, R.; Wu, Y. Data-Driven Health Assessment in a Flight Control System under Uncertain Conditions. Appl. Sci. 2021, 11, 10107. [Google Scholar] [CrossRef]
- Shifat, T.A.; Yasmin, R.; Hur, J.-W. A Data Driven RUL Estimation Framework of Electric Motor Using Deep Electrical Feature Learning from Current Harmonics and Apparent Power. Energies 2021, 14, 3156. [Google Scholar] [CrossRef]
- Bhargava, C. Review of Health Prognostics and Condition Monitoring of Electronic Components. IEEE Access 2020, 8, 75163–75183. [Google Scholar] [CrossRef]
- Zhao, S.; Makis, V.; Chen, S.; Li, Y. Health Assessment Method for Electronic Components Subject to Condition Monitoring and Hard Failure. IEEE Trans. Instrum. Meas. 2019, 68, 138–150. [Google Scholar] [CrossRef]
- Kim, S.; Akpudo, U.E.; Hur, J.-W. A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps. Electronics 2021, 10, 2323. [Google Scholar] [CrossRef]
- Lee, M.-S.; Shifat, T.A.; Hur, J.W. Kalman Filter Assisted Deep Feature Learning for RUL Prediction of Hydraulic Gear Pump. IEEE Sens. J. 2022. [Google Scholar] [CrossRef]
- Shifat, T.A.; Hur, J.W. ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis. IEEE Access 2021, 9, 429–9441. [Google Scholar] [CrossRef]
- Narale, S.B.; Verma, A.; Anand, S. Accelerated Aging Method and Lifetime Evaluation of Aluminum Electrolytic Capacitors for Power Electronic Application. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3662–3669. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Gong, C. ESR Estimation Schemes of Output Capacitor for Buck Converter from Capacitor Perspective. Electronics 2020, 9, 1596. [Google Scholar] [CrossRef]
- Amaral, A.M.R.; Cardoso, A.J.M. A Simple Offline Technique for Evaluating the Condition of Aluminum–Electrolytic–Capacitors. IEEE Trans. Ind. Electron. 2009, 56, 3230–3237. [Google Scholar] [CrossRef]
- Amaral, A.M.R.; Cardoso, A.J.M. An Economic Offline Technique for Estimating the Equivalent Circuit of Aluminum Electrolytic Capacitors. IEEE Trans. Instrum. Meas. 2008, 57, 2697–2710. [Google Scholar] [CrossRef]
- Rojas-Dueñas, G.; Riba, J.-R.; Moreno-Eguilaz, M. CNN-LSTM-Based Prognostics of Bidirectional Converters for Electric Vehicles’ Machine. Sensors 2021, 21, 7079. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Nguyen, T.H.; Lee, D.; Lee, K.; Kim, J. Fault Diagnosis of DC-Link Capacitors in Three-Phase AC/DC PWM Converters by Online Estimation of Equivalent Series Resistance. IEEE Trans. Ind. Electron. 2013, 60, 4118–4127. [Google Scholar] [CrossRef]
- Miao, W.; Liu, X.; Lam, K.H.; Pong, P.W.T. Condition Monitoring of Electrolytic Capacitors in Boost Converters by Magnetic Sensors. IEEE Sens. J. 2019, 19, 10393–10402. [Google Scholar] [CrossRef]
- Laadjal, K.; Sahraoui, M.; Cardoso, A.J.M. On-Line Fault Diagnosis of DC-Link Electrolytic Capacitors in Boost Converters Using the STFT Technique. IEEE Trans. Power Electron. 2021, 36, 6303–6312. [Google Scholar] [CrossRef]
- Ghadrdan, M.; Peyghami, S.; Mokhtari, H.; Blaabjerg, F.O.G. Condition Monitoring of DC-link Electrolytic Capacitor in Back-to-Back Converters Based on Dissipation Factor. IEEE Trans. Power Electron. 2022, 37, 733–9744. [Google Scholar] [CrossRef]
- Xin, X.; Yang, Y.; Ma, K.; He, B. Online Monitoring for Sub-module Capacitance in Modular Multilevel Converter with Four Sampling Points of Capacitor Voltage. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 935–939. [Google Scholar] [CrossRef]
- Rodriguez Ramos, E.; Leyva, R.; Farivar, G.G.; Townsend, C.D.; Pou, J. Capacitor Condition Monitoring for the Low-Capacitance StatCom: An Online Approach. IEEE Trans. Power Electron. 2022, 37, 3697–3701. [Google Scholar] [CrossRef]
- Asoodar, M.; Nahalparvari, M.; Danielsson, C.; Söderström, R.; Nee, H.P. Online Health Monitoring of DC-Link Capacitors in Modular Multilevel Converters for FACTS and HVDC Applications. IEEE Trans. Power Electron. 2021, 36, 13489–13503. [Google Scholar] [CrossRef]
- Ren, L.; Gong, C.; Zhao, Y. An Online ESR Estimation Method for Output Capacitor of Boost Converter. IEEE Trans. Power Electron. 2019, 34, 10153–10165. [Google Scholar] [CrossRef]
- Laadjal, K.; Bento, F.; Cardoso, A.J.M. On-Line Diagnostics of Electrolytic Capacitors in Fault-Tolerant LED Lighting Systems. Electronics 2022, 11, 1444. [Google Scholar] [CrossRef]
- Zhao, Z.; Davari, P.; Lu, W.; Blaabjerg, F. Online DC-Link Capacitance Monitoring for Digital-Controlled Boost PFC Converters without Additional Sampling Devices. IEEE Trans. Ind. Electron. 2022. [Google Scholar] [CrossRef]
- Ghadrdan, M.; Abdi, B.; Peyghami, S.; Mokhtari, H.; Blaabjerg, F. On-line Condition Monitoring System for DC-link Capacitor of Back-to-Back Converters Using Large-signal Transients. IEEE J. Emerg. Sel. Top. Power Electron. 2022. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Y.; Tang, H. Prognostics of Aluminum Electrolytic Capacitors Based on Chained-SVR and 1D-CNN Ensemble Learning. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Harada, K.; Katsuki, A.; Fujiwara, M. Use of ESR for deterioration diagnosis of electrolytic capacitor. IEEE Trans. Power Electron. 1993, 8, 355–361. [Google Scholar] [CrossRef]
- Hao, M.; Wang, L. Fault diagnosis and failure prediction of aluminum electrolytic capacitors in power electronic converters. In Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, NC, USA, 6–10 November 2005; p. 6. [Google Scholar] [CrossRef]
- Rigamonti, M.; Baraldi, P.; Zio, E.; Astigarraga, D.; Galarza, A. Particle Filter-Based Prognostics for an Electrolytic Capacitor Working in Variable Operating Conditions. IEEE Trans. Power Electron. 2016, 31, 1567–1575. [Google Scholar] [CrossRef]
- Kulkarni, C.S.; Celaya, J.R.; Goebel, K.; Biswas, G. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress. PHM Soc. Eur. Conf. 2012, 1. [Google Scholar] [CrossRef]
- Celaya, J.R.; Kulkarni, C.; Saha, S.; Biswas, G.; Goebel, K. Accelerated aging in electrolytic capacitors for prognostics. In Proceedings of the 2012 Proceedings Annual Reliability and Maintainability Symposium, Reno, NV, USA, 23–26 January 2012; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, C.; Biswas, G.; Koutsoukos, X.; Celaya, J.; Goebel, K. Integrated diagnostic/prognostic experimental setup for capacitor degradation and health monitoring. In Proceedings of the 2010 IEEE Autotestcon, Orlando, FL, USA, 13–16 September 2010; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kareem, A.B.; Ejike Akpudo, U.; Hur, J.-W. An Integrated Cost-Aware Dual Monitoring Framework for SMPS Switching Device Diagnosis. Electronics 2021, 10, 2487. [Google Scholar] [CrossRef]
- García, E.M.; Alberti, M.G.; Arcos Álvarez, A.A. Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests. Appl. Sci. 2022, 12, 4565. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, C.; He, X.; Chen, K.; Wang, R. The Impact of Partial Balance of Imbalanced Dataset on Classification Performance. Electronics 2022, 11, 1322. [Google Scholar] [CrossRef]
- Talebi, S.; Waczak, J.; Fernando, B.A.; Sridhar, A.; Lary, D.J. Data-Driven EEG Band Discovery with Decision Trees. Sensors 2022, 22, 3048. [Google Scholar] [CrossRef]
- Lee, S.-J.; Tseng, C.-H.; Yang, H.-Y.; Jin, X.; Jiang, Q.; Pu, B.; Hu, W.-H.; Liu, D.-R.; Huang, Y.; Zhao, N. Random RotBoost: An Ensemble Classification Method Based on Rotation Forest and AdaBoost in Random Subsets and Its Application to Clinical Decision Support. Entropy 2022, 24, 617. [Google Scholar] [CrossRef]
- Huang, J.; Ling, S.; Wu, X.; Deng, R. GIS-Based Comparative Study of the Bayesian Network, Decision Table, Radial Basis Function Network and Stochastic Gradient Descent for the Spatial Prediction of Landslide Susceptibility. Land 2022, 11, 436. [Google Scholar] [CrossRef]
- Masood, H.; Zafar, A.; Ali, M.U.; Hussain, T.; Khan, M.A.; Tariq, U.; Damaševičius, R. Tracking of a Fixed-Shape Moving Object Based on the Gradient Descent Method. Sensors 2022, 22, 1098. [Google Scholar] [CrossRef]
- Franzese, G.; Milios, D.; Filippone, M.; Michiardi, P. A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization. Entropy 2021, 23, 1426. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Heo, T.-Y. Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data. Sensors 2022, 22, 2479. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Gao, C. Extreme Learning Machine Enhanced Gradient Boosting for Credit Scoring. Algorithms 2022, 15, 149. [Google Scholar] [CrossRef]
- Kim, C.; Park, T. Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search. Sustainability 2022, 14, 5256. [Google Scholar] [CrossRef]
- Zheng, H.; Xiao, F.; Sun, S.; Qin, Y. Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm. Sensors 2022, 22, 3354. [Google Scholar] [CrossRef]
- Shifat, T.A.; Hur, J.W. Reliability improvement in the presence of weak fault features using non-Gaussian IMF selection and AdaBoost technique. J. Mech. Sci. Technol. 2021, 35, 3355–3367. [Google Scholar] [CrossRef]
- Zou, X.; Wang, C.; Luo, M.; Ren, Q.; Liu, Y.; Zhang, S.; Bai, Y.; Meng, J.; Zhang, W.; Su, S.W. Design of Electronic Nose Detection System for Apple Quality Grading Based on Computational Fluid Dynamics Simulation and K-Nearest Neighbor Support Vector Machine. Sensors 2022, 22, 2997. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Anaya, M.; Pozo, F.; Tibaduiza, D. Nonlinear Feature Extraction Through Manifold Learning in an Electronic Tongue Classification Task. Sensors 2020, 20, 4834. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Alshehri, M.; Keshta, I.; Chakraverti, A.K.; Rajpurohit, J.; Abugabah, A. An Experimental Analysis of Various Machine Learning Algorithms for Hand Gesture Recognition. Electronics 2022, 11, 968. [Google Scholar] [CrossRef]
- Peppes, N.; Daskalakis, E.; Alexakis, T.; Adamopoulou, E.; Demestichas, K. Performance of Machine Learning-Based Multi-Model Voting Ensemble Methods for Network Threat Detection in Agriculture 4.0. Sensors 2021, 21, 7475. [Google Scholar] [CrossRef]
- Akpudo, U.E.; Jang-Wook, H. A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features. IEEE Access 2020, 8, 175020–175034. [Google Scholar] [CrossRef]
- Current Dependency and Voltage Dependency|FAQ|Hioki. Available online: https://www.hioki.com/us-en/support/faq/detail/id_114 (accessed on 10 February 2022).
- Contents. Available online: https://www.testequipmentdepot.com/hioki/pdf/bt3564_manual.pdf (accessed on 15 February 2022).
- Kim, J.H.; Yoon, H.K.; Cho, S.; Kim, Y.; Lee, J. Four Electrode Resistivity Probe for Porosity Evaluation. Geotech. Test. J. 2011, 34. [Google Scholar] [CrossRef]
- Satish, B.; Bharat, K.; Sachin, K.; Saxena, A.K. Evaluation of four-terminal-pair capacitance standards using electrical equivalent circuit model. Measurement 2015, 73, 121–126. [Google Scholar] [CrossRef]
- Hai, M.; Zhang, Y.; Yuejin, Z. A Performance Evaluation of Classification Algorithms for Big Data. Procedia Comput. Sci. 2017, 122, 1100–1107. [Google Scholar] [CrossRef]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
Parameters | Definition | Functions |
---|---|---|
Z | Impedance | |
D | Loss coefficient/Dissipation Factor | |
Equivalent Series Resistance | ||
Q | Quality Factor | Q = |
Feature Name | Definition |
---|---|
nth percentile (n = 5, 25, 75, 95) | |
Root Mean Square | |
Mean | |
Kurtosis | |
Interquartile range | |
Median abs deviation | |
Skewness | |
Max | |
Min | |
Crest Factor | |
Peak factor | |
Wave Factor | |
Standard error mean | |
Standard deviation | |
Variance |
Functions | Description |
---|---|
Electrical Parameters | D–Rs–Q–Z |
Frequency/Freq-Step | 1 MHz/1000 Hz/10 Hz |
DC Bias | ON 1.0 volts |
Signal Level | 0.5 Vrms |
Measurement Range | Auto |
Speed | SLOW2 |
LowZ mode | ON |
ML Classifier | Major Functional Parameters | Parameter Values |
---|---|---|
MLP | Activation function (f), number of layers/nodes (), | 2*f = ReLU, = 1/7, = 0.001 |
learning rate () | ||
DT | max–depth | 3 |
KNN | k | 3 |
RF | n estimators | 70 |
SGD | random–state | 101 |
loss function = modified huber | ||
NB | Gaussian, var–smoothing = 1 × 10−9 | – |
LR | Regularization | L1, L2 |
GBC | n estimators | 100 |
SVC | Regularization (C), gamma () | C = 100, = auto |
Adaboost | n estimators | 50 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 58.89 | 48.17 | 57.33 | 49.49 | 8.2444 |
DT | 91.11 | 93.28 | 92.00 | 91.81 | 0.4467 |
KNN | 99.33 | 98.68 | 98.67 | 98.67 | 0.3133 |
RDF | 99.77 | 96.13 | 95.78 | 95.77 | 17.5067 |
SGD | 73.88 | 67.90 | 70.11 | 62.22 | 1.0333 |
NB | 34.55 | 53.27 | 57.22 | 51.04 | 0.2667 |
LR | 74.55 | 70.07 | 69.67 | 69.64 | 2.5133 |
GB | 100.00 | 100.00 | 100.00 | 100.00 | 55.4777 |
SVC | 94.33 | 80.86 | 80.33 | 80.19 | 1.0400 |
Adaboost | 75.11 | 77.00 | 75.00 | 73.00 | 8.6900 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 48.77 | 46.49 | 48.78 | 43.53 | 7.6400 |
DT | 91.44 | 92.37 | 91.56 | 91.55 | 0.3700 |
KNN | 98.22 | 98.27 | 98.22 | 98.22 | 0.2833 |
RDF | 91.78 | 91.94 | 91.78 | 91.72 | 15.8266 |
SGD | 73.00 | 74.45 | 73.00 | 69.36 | 1.2266 |
NB | 48.22 | 44.85 | 48.22 | 38.49 | 0.2200 |
LR | 71.56 | 70.93 | 71.56 | 70.53 | 3.4933 |
GB | 99.11 | 99.12 | 99.11 | 99.11 | 50.1100 |
SVC | 89.78 | 90.53 | 89.78 | 89.28 | 1.2000 |
Adaboost | 88.78 | 89.98 | 88.78 | 88.89 | 8.7733 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 86.88 | 88.83 | 86.89 | 86.82 | 9.1933 |
DT | 90.11 | 90.88 | 91.66 | 88.89 | 0.4066 |
KNN | 98.44 | 97.76 | 98.89 | 99.44 | 0.3067 |
RDF | 95.44 | 98.67 | 97.22 | 98.22 | 15.6333 |
SGD | 78.44 | 87.45 | 76.89 | 86.44 | 1.1222 |
NB | 68.88 | 78.88 | 76.66 | 76.66 | 0.2267 |
LR | 92.66 | 89.00 | 91.11 | 89.55 | 2.8867 |
GB | 99.44 | 100.00 | 100.00 | 100.00 | 52.7111 |
SVC | 93.33 | 96.66 | 96.66 | 96.66 | 0.7267 |
Adaboost | 93.78 | 93.33 | 93.33 | 93.33 | 8.8133 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 93.33 | 93.28 | 93.25 | 93.41 | 10.2133 |
DT | 98.33 | 98.33 | 98.35 | 98.36 | 0.3333 |
KNN | 99.33 | 99.34 | 99.36 | 99.34 | 0.3066 |
RDF | 99.33 | 99.36 | 99.33 | 99.32 | 15.3333 |
SGD | 94.33 | 94.32 | 94.33 | 94.34 | 0.7733 |
NB | 95.11 | 95.11 | 95.09 | 95.10 | 0.2444 |
LR | 92.89 | 93.00 | 92.89 | 93.00 | 2.4888 |
GB | 100.00 | 100.00 | 100.00 | 100.00 | 44.3967 |
SVC | 98.33 | 98.32 | 98.34 | 98.33 | 0.5667 |
Adaboost | 97.77 | 97.75 | 97.72 | 97.75 | 8.3333 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 87.56 | 87.55 | 87.54 | 87.56 | 5.2133 |
DT | 97.77 | 97.25 | 97.11 | 97.11 | 0.3933 |
KNN | 99.66 | 99.67 | 99.67 | 99.67 | 0.3133 |
RDF | 97.11 | 95.26 | 94.67 | 94.63 | 15.7267 |
SGD | 89.77 | 89.35 | 87.89 | 87.72 | 0.9999 |
NB | 83.33 | 83.00 | 74.11 | 69.93 | 0.2444 |
LR | 89.22 | 89.43 | 89.33 | 89.32 | 2.2222 |
GB | 99.55 | 99.46 | 99.44 | 99.44 | 54.8233 |
SVC | 94.55 | 95.54 | 95.11 | 95.10 | 0.5666 |
Adaboost | 81.88 | 84.00 | 82.00 | 81.00 | 9.0733 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 61.89 | 66.88 | 66.44 | 64.81 | 9.4444 |
DT | 94.00 | 88.38 | 83.00 | 81.95 | 0.3444 |
KNN | 99.44 | 98.62 | 98.56 | 98.56 | 0.2800 |
RDF | 99.00 | 96.29 | 96.11 | 96.09 | 15.7533 |
SGD | 74.44 | 87.57 | 85.00 | 84.33 | 1.1667 |
NB | 57.22 | 63.00 | 50.11 | 45.28 | 0.2333 |
LR | 69.55 | 68.34 | 69.44 | 67.69 | 3.0066 |
GB | 99.88 | 99.78 | 99.78 | 99.78 | 50.8233 |
SVC | 94.88 | 78.1 | 75.67 | 73.4 | 1.0800 |
Adaboost | 99.22 | 88.45 | 83.89 | 82.94 | 8.8933 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 71.22 | 73.01 | 71.22 | 67.94 | 8.4533 |
DT | 96.67 | 96.69 | 96.33 | 96.34 | 0.4133 |
KNN | 98.67 | 98.70 | 98.67 | 98.67 | 0.2933 |
RDF | 99.22 | 95.85 | 95.44 | 95.48 | 15.5867 |
SGD | 95.11 | 91.73 | 89.00 | 88.37 | 0.7933 |
NB | 71.67 | 67.70 | 66.11 | 64.00 | 0.2133 |
LR | 87.56 | 88.69 | 88.00 | 87.84 | 3.0933 |
GB | 99.67 | 99.25 | 99.22 | 99.22 | 53.7633 |
SVC | 97.11 | 94.48 | 94.11 | 94.08 | 0.6867 |
Adaboost | 84.56 | 86.95 | 86.56 | 86.41 | 9.0067 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 58.33 | 58.90 | 58.33 | 53.62 | 7.8444 |
DT | 96.00 | 95.85 | 95.56 | 95.55 | 0.4267 |
KNN | 98.00 | 98.05 | 98.00 | 98.00 | 0.2733 |
RDF | 96.00 | 94.05 | 94.00 | 93.95 | 15.9200 |
SGD | 96.00 | 95.84 | 95.44 | 95.43 | 0.8800 |
NB | 60.00 | 65.93 | 58.56 | 56.20 | 0.2200 |
LR | 62.45 | 63.34 | 62.22 | 60.87 | 3.1867 |
GB | 99.32 | 99.45 | 99.11 | 99.22 | 57.9633 |
SVC | 84.00 | 96.50 | 96.33 | 96.34 | 0.7933 |
Adaboost | 96.32 | 96.78 | 96.11 | 96.04 | 8.1800 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 75.88 | 77.02 | 75.89 | 75.64 | 10.1400 |
DT | 84.33 | 89.08 | 84.11 | 83.43 | 0.3267 |
KNN | 97.55 | 97.97 | 97.78 | 97.75 | 0.2800 |
RDF | 98.44 | 96.85 | 96.78 | 96.76 | 15.3333 |
SGD | 80.22 | 79.70 | 78.00 | 74.49 | 0.9067 |
NB | 33.66 | 51.60 | 52.67 | 42.16 | 0.2067 |
LR | 77.88 | 78.28 | 77.78 | 77.36 | 2.5067 |
GB | 100.00 | 99.45 | 99.44 | 99.44 | 45.2500 |
SVC | 79.88 | 79.57 | 78.00 | 77.01 | 0.7267 |
Adaboost | 83.22 | 88.02 | 85.78 | 85.18 | 8.2467 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 44.22 | 38.68 | 44.22 | 32.79 | 5.8133 |
DT | 83.88 | 89.01 | 85.56 | 84.66 | 0.4333 |
KNN | 99.88 | 98.38 | 98.33 | 98.33 | 0.3000 |
RDF | 96.88 | 97.03 | 96.89 | 96.88 | 15.6867 |
SGD | 85.00 | 88.02 | 84.89 | 83.54 | 0.9533 |
NB | 43.33 | 45.48 | 50.44 | 43.87 | 0.2200 |
LR | 77.67 | 73.70 | 74.56 | 73.30 | 2.8733 |
GB | 99.88 | 99.57 | 99.56 | 99.56 | 55.4167 |
SVC | 89.11 | 87.55 | 86.78 | 86.7 | 0.8667 |
Adaboost | 99.56 | 96.02 | 95.78 | 95.73 | 9.3333 |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
MLP | 29.67 | 24.33 | 29.67 | 24.46 | 4.7667 |
DT | 92.88 | 91.94 | 90.00 | 89.80 | 0.3000 |
KNN | 99.55 | 98.16 | 98.11 | 98.11 | 0.2600 |
RDF | 95.78 | 94.69 | 94.44 | 94.45 | 15.5066 |
SGD | 91.22 | 73.25 | 65.67 | 61.53 | 1.1933 |
NB | 33.78 | 52.18 | 45.78 | 41.06 | 0.2333 |
LR | 80.44 | 81.87 | 80.43 | 80.45 | 2.8333 |
GB | 99.77 | 99.78 | 99.75 | 99.77 | 41.5033 |
SVC | 92.00 | 91.28 | 91.45 | 91.67 | 1.3667 |
Adaboost | 89.22 | 89.56 | 88.22 | 89.47 | 8.2133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kareem, A.B.; Hur, J.-W. A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters. Processes 2022, 10, 1091. https://doi.org/10.3390/pr10061091
Kareem AB, Hur J-W. A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters. Processes. 2022; 10(6):1091. https://doi.org/10.3390/pr10061091
Chicago/Turabian StyleKareem, Akeem Bayo, and Jang-Wook Hur. 2022. "A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters" Processes 10, no. 6: 1091. https://doi.org/10.3390/pr10061091
APA StyleKareem, A. B., & Hur, J. -W. (2022). A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters. Processes, 10(6), 1091. https://doi.org/10.3390/pr10061091