Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Object of the Study
2.2. Experiment Design
2.3. BaP Extraction from Soil
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montanarella, L.; Rusco, E. Threats to Soil Quality in Europe; Office for Official Publications of the European Communities: Luxembourg, 2008. [Google Scholar] [CrossRef]
- Montanarella, L.; Badraoui, M.; Chude, V.; Costa, I.; Mamo, T.; Yemefack, M.; Aulang, M.; Yagi, K.; Hong, S.Y.; Vijarnsorn, P. Status of the World’s Soil Resources: Main Report; Embrapa Solos-Livro Científico (ALICE): Brasilia, Brazil, 2015. [Google Scholar]
- IARC. List of Classifications, Volumes 1–123//IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://monographs.iarc.fr/list-of-classifications-volumes/ (accessed on 25 July 2020).
- GN 2.1.7.2041-06; Maximum Permissible Concentrations (MPC) of Chemical Substances in Soil. Hygienic Standards—Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2006.
- Gennadiev, A.; Del’vig, I.; Kasimov, N.; Teplitskaya, T. Polycyclic Aromatic Hydrocarbons in Soils of Background Territories and Natural Pedogenesis. In Monitoring of the Background Contamination of the Environment; Hydrometeoizdat: Moscow, Russia, 1989; pp. 149–161. [Google Scholar]
- Sushkova, S.; Minkina, T.; Dudnikova, T.; Barbashev, A.; Mazarji, M.; Chernikova, N.; Lobzenko, I.; Deryabkina, I.; Kizilkaya, R. Influence of carbon-containing and mineral sorbents on the toxicity of soil contaminated with benzo [a] pyrene during phytotesting. Environ. Geochem. Health 2021, 44, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Sushkova, S.; Minkina, T.; Tarigholizadeh, S.; Rajput, V.; Fedorenko, A.; Antonenko, E.; Dudnikova, T.; Chernikova, N.; Yadav, B.K.; Batukaev, A. Soil PAHs contamination effect on the cellular and subcellular organelle changes of Phragmites australis Cav. Environ. Geochem. Health 2021, 43, 2407–2421. [Google Scholar] [CrossRef] [PubMed]
- Gorovtsov, A.; Rajput, V.; Minkina, T.; Mandzhieva, S.; Sushkova, S.; Kornienko, I.; Grigoryeva, T.; Chokheli, V.; Aleshukina, I.; Zinchenko, V. The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Appl. Geochem. 2019, 104, 93–101. [Google Scholar] [CrossRef]
- Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Perelomov, L.V.; Soja, G.; Zamulina, I.V.; Rajput, V.D.; Sushkova, S.N.; Mohan, D.; Yao, J. The mechanisms of biochar interactions with microorganisms in soil. Environ. Geochem. Health 2020, 42, 2495–2518. [Google Scholar] [CrossRef]
- Sokhn, J.; De Leij, F.; Hart, T.; Lynch, J. Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett. Appl. Microbiol. 2001, 33, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Atagana, H.I. Biodegradation of PAHs by fungi in contaminated-soil containing cadmium and nickel ions. Afr. J. Biotechnol. 2009, 8, 5780–5789. [Google Scholar] [CrossRef] [Green Version]
- Nam, I.-H.; Kim, Y.; Cho, D.; Kim, J.-G.; Song, H.; Chon, C.-M. Effects of heavy metals on biodegradation of fluorene by a Sphingobacterium sp. strain (KM-02) isolated from polycyclic aromatic hydrocarbon-contaminated mine soil. Environ. Eng. Sci. 2015, 32, 891–898. [Google Scholar] [CrossRef]
- Ma, X.-k.; Ding, N.; Peterson, E.C.; Daugulis, A.J. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Appl. Microbiol. Biotechnol. 2016, 100, 7741–7750. [Google Scholar] [CrossRef]
- Baltrons, O.; López-Mesas, M.; Vilaseca, M.; Gutiérrez-Bouzán, C.; Le Derf, F.; Portet-Koltalo, F.; Palet, C. Influence of a mixture of metals on PAHs biodegradation processes in soils. Sci. Total Environ. 2018, 628, 150–158. [Google Scholar] [CrossRef]
- Linnik, V.G.; Bauer, T.V.; Minkina, T.M.; Mandzhieva, S.S.; Mazarji, M. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ. Geochem. Health 2022, 44, 319–333. [Google Scholar] [CrossRef]
- Minkina, T.; Konstantinova, E.; Bauer, T.; Mandzhieva, S.; Sushkova, S.; Chaplygin, V.; Burachevskaya, M.; Nazarenko, O.; Kizilkaya, R.; Gülser, C.; et al. Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environ. Geochem. Health 2021, 43, 2285–2300. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.-Z.; Wang, J.-X.; Zhang, M.; Xu, Y.-X.; Wu, X.-J. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ. Sci. Technol. 2014, 48, 1158–1165. [Google Scholar] [CrossRef]
- Jeelani, N.; Yang, W.; Xu, L.; Qiao, Y.; An, S.; Leng, X. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci. Rep. 2017, 7, 8028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geremias, R.; De Fávere, V.T.; Pedrosa, R.C.; Fattorini, D. Bioaccumulation and adverse effects of trace metals and polycyclic aromatic hydrocarbons in the common onion Allium cepa as a model in ecotoxicological bioassays. Chem. Ecol. 2011, 27, 515–522. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, H.; Lu, Y.; Yu, X.; Wang, J.; Sun, S.; Liu, M.; Li, D.; Li, Y.-F.; Zhang, D. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Sci. Rep. 2017, 7, 12165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.-k.; Li, T.-t.; Fam, H.; Charles Peterson, E.; Zhao, W.-w.; Guo, W.; Zhou, B. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial–fungal consortium. Environ. Technol. 2018, 39, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Henry, H.F. Natural Revegetation of an Aged Petroleum Landfarm Impacted with Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metals (Cr, Pb, Zn, Ni, Cu): Ecological Restoration, Remediation, and Risk. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2004. [Google Scholar]
- Wang, C.; Luo, Y.; Tan, H.; Liu, H.; Xu, F.; Xu, H. Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction. Environ. Pollut. 2020, 266, 115296. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Gong, Z.; Miao, R.; Su, D.; Li, X.; Jia, C.; Zhuang, J. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecol. Eng. 2017, 99, 22–30. [Google Scholar] [CrossRef]
- Davin, M.; Starren, A.; Marit, E.; Lefébure, K.; Fauconnier, M.-L.; Colinet, G. Investigating the effect of medicago sativa L. and trifolium pratense L. root exudates on PAHs bioremediation in an aged-contaminated soil. Water Air Soil Pollut. 2019, 230, 296. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, H.; Lu, C.; Liu, J.; Waigi, M.G.; Ling, W. Root exudates enhance the PAH degradation and degrading gene abundance in soils. Sci. Total Environ. 2021, 764, 144436. [Google Scholar] [CrossRef]
- Smernik, R.J. Biochar and sorption of organic compounds. In Biochar for Environmental Management: Science and Technology; Earthscan Publications Ltd.: London, UK, 2009; pp. 289–300. [Google Scholar]
- Kuśmierz, M.; Oleszczuk, P.; Kraska, P.; Pałys, E.; Andruszczak, S. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 2016, 146, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Gorovtsov, A.V.; Fedorenko, G.M.; Minkina, T.M.; Fedorenko, A.G.; Lysenko, V.S.; Sushkova, S.S.; Mandzhieva, S.S.; Elinson, M.A. The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environ. Geochem. Health 2021, 43, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D.; Singh, J.; Suyal, D.C.; Kumar, A.; Rajput, V.D. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 24917–24939. [Google Scholar] [CrossRef] [PubMed]
- Mazarji, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Fedorenko, A.; Bauer, T.; Soldatov, A.; Barakhov, A.; Dudnikova, T. Biochar-assisted Fenton-like oxidation of benzo [a] pyrene-contaminated soil. Environ. Geochem. Health 2022, 44, 195–206. [Google Scholar] [CrossRef]
- Sushkova, S.; Minkina, T.; Turina, I.; Mandzhieva, S.; Bauer, T.; Kizilkaya, R.; Zamulina, I. Monitoring of benzo [a] pyrene content in soils under the effect of long-term technogenic poluttion. J. Geochem. Explor. 2017, 174, 100–106. [Google Scholar] [CrossRef]
- Burachevskaya, M.; Mandzhieva, S.; Bauer, T.; Minkina, T.; Rajput, V.; Chaplygin, V.; Fedorenko, A.; Chernikova, N.; Zamulina, I.; Kolesnikov, S.; et al. The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. Plants 2021, 10, 841. [Google Scholar] [CrossRef]
- Minkina, T.; Vasilyeva, G.; Popileshko, Y.; Bauer, T.; Sushkova, S.; Fedorenko, A.; Antonenko, E.; Pinskii, D.; Mazarji, M.; Ferreira, C.S.S. Sorption of benzo [a] pyrene by Chernozem and carbonaceous sorbents: Comparison of kinetics and interaction mechanisms. Environ. Geochem. Health 2021, 44, 133–148. [Google Scholar] [CrossRef]
- Kołtowski, M.; Oleszczuk, P. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals. Environ. Toxicol. Chem. 2016, 35, 1321–1328. [Google Scholar] [CrossRef]
- Wu, S.; He, H.; Inthapanya, X.; Yang, C.; Lu, L.; Zeng, G.; Han, Z. Role of biochar on composting of organic wastes and remediation of contaminated soils—A review. Environ. Sci. Pollut. Res. 2017, 24, 16560–16577. [Google Scholar] [CrossRef]
- GOST RISO 22030–2009; Soil Quality: Biological Methods—Chronic Phytotoxicity to Higher Plants—Introduction. Publishing House of Standards: Moscow, Russia, 2009.
- Sushkova, S.; Deryabkina, I.; Antonenko, E.; Kizilkaya, R.; Rajput, V.; Vasilyeva, G. Benzo [a] pyrene degradation and bioaccumulation in soil-plant system under artificial contamination. Sci. Total Environ. 2018, 633, 1386–1391. [Google Scholar] [CrossRef]
- ISO 13877–2005; Soil Quality-Determination of Polynuclear Aromatic Hydrocarbons—Method Using High-Performance Liquid Chromatography. International Organization for Standardization: Geneve, Switzerland, 2005.
- Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781–4794. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo [a] pyrene. Int. Biodeterior. Biodegrad. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- RoLing, W.F.; Milner, M.G.; Jones, D.M.; Lee, K.; Daniel, F.; Swannell, R.J.; Head, I.M. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 2002, 68, 5537–5548. [Google Scholar] [CrossRef] [Green Version]
- Andreoni, V.; Gianfreda, L. Bioremediation and monitoring of aromatic-polluted habitats. Appl. Microbiol. Biotechnol. 2007, 76, 287–308. [Google Scholar] [CrossRef]
- Yan, H.; Yan, Z.; Wang, L.; Hao, Z.; Huang, J. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment. J. Hazard. Mater. 2022, 425, 127767. [Google Scholar] [CrossRef]
- Bianco, F.; Race, M.; Papirio, S.; Oleszczuk, P.; Esposito, G. The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments. Chemosphere 2021, 263, 128274. [Google Scholar] [CrossRef]
- Liu, S.-H.; Zeng, G.-M.; Niu, Q.-Y.; Liu, Y.; Zhou, L.; Jiang, L.-H.; Tan, X.-f.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef]
- Baldrian, P.; in der Wiesche, C.; Gabriel, J.; Nerud, F.; Zadražil, F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl. Environ. Microbiol. 2000, 66, 2471–2478. [Google Scholar] [CrossRef] [Green Version]
- Goswami, L.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 2017, 7, 37. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, D.; Sun, C. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 2007, 41, 2536–2541. [Google Scholar] [CrossRef]
- Wang, F.; Sun, H.; Ren, X.; Liu, Y.; Zhu, H.; Zhang, P.; Ren, C. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars. Environ. Pollut. 2017, 231, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Z.; Zhu, H.; Cheng, Z.; Kang, M.; Luo, C.; Li, J.; Zhang, G. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: Concentration, distribution, source, and risk assessment. Sci. Total Environ. 2012, 439, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Ke, T.; Wu, Y.; Zhang, C.; Hu, Z.; Yin, H.; Guo, L.; Chen, L.; Zhang, D. Heavy metal exposure alters the uptake behavior of 16 priority polycyclic aromatic hydrocarbons (PAHs) by pak choi (Brassica chinensis L.). Environ. Sci. Technol. 2018, 52, 13457–13468. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xia, X.; Chu, S.; Wang, H.; Zhang, Z.; Xi, N.; Gan, J. Cation–π Interactions with Coexisting Heavy Metals Enhanced the Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach. Environ. Sci. Technol. 2020, 54, 7261–7270. [Google Scholar] [CrossRef]
Physical Clay | Silt | Corg | Ca2+ | Mg2+ | pH | CuO |
---|---|---|---|---|---|---|
% | cM(+)/kg−1 | mg kg−1 | ||||
48.3 ± 2.1 | 29.8 ± 1.8 | 3.8 ± 0.1 | 30.0 ± 0.7 | 4.1 ± 0.2 | 7.36 ± 0.05 | 48 |
Sample Name | Concentration | ||
---|---|---|---|
BaP | CuO | Biochar | |
µg kg−1 | mg kg−1 | % | |
The control | 0 | 0 | 0 |
Control + biochar 1% | 0 | 0 | 1 |
Control + biochar 5% | 0 | 0 | 5 |
BaP400 | 400 | 0 | 0 |
BaP400 + Cu300 | 400 | 300 | 0 |
BaP400 + biochar 1% | 400 | 0 | 1 |
BaP400 + Cu300 + biochar 1% | 400 | 300 | 1 |
BaP800 | 800 | 0 | 0 |
BaP800 + Cu2000 | 800 | 2000 | 0 |
BaP800 + biochar 5% | 800 | 0 | 5 |
BaP800 + Cu2000 + biochar 5% | 800 | 2000 | 5 |
BaP1200 | 1200 | 0 | 0 |
BaP1200 + Cu10,000 | 1200 | 10,000 | 0 |
BaP1200 + biochar 5% | 1200 | 0 | 5 |
BaP1200 + Cu10,000 + biochar 5% | 1200 | 10,000 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sushkova, S.; Minkina, T.; Dudnikova, T.; Barbashev, A.; Antonenko, E.; Chernikova, N.; Barakhov, A.; Shuvaev, E.; Bakoeva, G.; Nazarenko, O.; et al. Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions. Processes 2022, 10, 1147. https://doi.org/10.3390/pr10061147
Sushkova S, Minkina T, Dudnikova T, Barbashev A, Antonenko E, Chernikova N, Barakhov A, Shuvaev E, Bakoeva G, Nazarenko O, et al. Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions. Processes. 2022; 10(6):1147. https://doi.org/10.3390/pr10061147
Chicago/Turabian StyleSushkova, Svetlana, Tatiana Minkina, Tamara Dudnikova, Andrey Barbashev, Elena Antonenko, Natalia Chernikova, Anatoly Barakhov, Evgeny Shuvaev, Gulnora Bakoeva, Olga Nazarenko, and et al. 2022. "Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions" Processes 10, no. 6: 1147. https://doi.org/10.3390/pr10061147
APA StyleSushkova, S., Minkina, T., Dudnikova, T., Barbashev, A., Antonenko, E., Chernikova, N., Barakhov, A., Shuvaev, E., Bakoeva, G., Nazarenko, O., & Mushtaq, W. (2022). Biochar Effect on the Benzo[a]pyrene Degradation Rate in the Cu Co-Contaminated Haplic Chernozem under Model Vegetation Experiment Conditions. Processes, 10(6), 1147. https://doi.org/10.3390/pr10061147