A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Materials and Equipment
2.2. Modified ABTS• Decolorization Assay
2.3. EPR Measurements
2.4. Statistical Analysis and Data Presentation
3. Results and Discussion
3.1. The Modified ABTS• Decolorization Assay
3.2. pH Dependence of ABTS• Reactivity
3.3. Effect of Ionic Strength of the Reactivity of ABTS•
3.4. ABTS• Self-Quenching
3.5. “Slow” and “Fast” Antioxidants
3.6. Alternative Parameters to Measure Antioxidant Activity
3.7. Reactivity of ABTS•
3.8. ABTS• Reduction Generates Free Radicals of Reducing Compounds
3.9. Interaction between Antioxidants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartosz, G. Total antioxidant capacity. Adv. Clin. Chem. 2003, 37, 219–292. [Google Scholar] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef]
- Sies, H. Total antioxidant capacity: Appraisal of a concept. J. Nutr. 2007, 137, 1493–1495. [Google Scholar] [CrossRef]
- Ortiz, R.; Antilén, M.; Speisky, H.; Aliaga, M.E.; López-Alarcón, C. Analytical parameters of the microplate-based ORAC-pyrogallol red assay. J. AOAC Int. 2011, 94, 1562–1566. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Holden, J.; Haytowitz, D.B.; Gebhardt, S.E.; Beecher, G.; Prior, R.L. Development of a database for total antioxidant capacity in foods: A preliminary study. J. Food Comp. Anal. 2004, 17, 407–422. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Song, W.O.; Fernandez, M.L.; Bruno, R.S.; Koo, S.I.; Chun, O.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Oteiza, P.I.; Galleano, M. In vitro measurements and interpretation of total antioxidant capacity. Biochim. Biophys. Acta 2014, 1840, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.L.; Chen, W.J.; Bakac, A.; Espenson, J.H. Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2, 2’-azinobis (3-ethylbenzothiazoline-6-sulfonate) radicals and ions. J. Phys. Chem. 1993, 97, 6710–6714. [Google Scholar] [CrossRef]
- Arts, M.J.; Haenen, G.R.; Voss, H.P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 2004, 42, 45–49. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Osman, A.M.; Wong, K.K.; Hill, S.J.; Fernyhough, A. Isolation and the characterization of the degradation products of the mediator ABTS-derived radicals formed upon reaction with polyphenols. Biochem. Biophys. Res. Commun. 2006, 340, 597–603. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; ·Beloborodov, V.L.; ·Selivanova, I.A. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: Fast- and slow-reacting antioxidant behavior. Chem. Pap. 2018, 72, 1917–1925. [Google Scholar] [CrossRef]
- Tian, X.; Schaich, K.M. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS(+•). J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Lou, H.; Hu, Y.; Zhang, L.; Sun, P.; Lu, H. Nondestructive evaluation of the changes of total flavonoid, total phenols, ABTS and DPPH radical scavenging activities, and sugars during mulberry (Morus alba L.) fruits development by chlorophyll fluorescence and RGB intensity values. LWT Food Sci. Technol. 2012, 47, 19–24. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, Â.M.C.; do Prado, G.M.; de Carvalho Magalhães, C.E.; Maia, G.A.; de Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Reddy, C.V.K.; Sreeramulu, D.; Raghunath, M. Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res. Int. 2010, 43, 285–288. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Matsusaka, Y.; Kawabata, J. Evaluation of antioxidant capacity of non-edible parts of some selected tropical fruits. Food Sci. Technol. Res. 2010, 16, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Taneva, I.; Petkova, N.; Dimov, I.; Ivanov, I.; Denev, P. Characterization of rose hip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem. 2016, 1, 35. [Google Scholar]
- Ruiz-Rodríguez, B.M.; De Ancos, B.; Sánchez-Moreno, C.; Fernández-Ruiz, V.; de Cortes Sánchez-Mata, M.; Cámara, M.; Tardío, J. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Aktumsek, A.; Karatas, S. Chemical and biological approaches on nine fruit tree leaves collected from the Mediterranean region of Turkey. J. Funct. Foods 2016, 22, 518–532. [Google Scholar] [CrossRef]
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Leong, L.P.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Barreiros, L.; Reis, S.; Segundo, M.A. Kinetic matching approach applied to ABTS assay for high-throughput determination of total antioxidant capacity of food products. J. Food Comp. Anal. 2014, 33, 187–194. [Google Scholar] [CrossRef]
- Fidrianny, I.; Nadiya, S.A.; Komar, R.W. Evaluation of antioxidant activities from various extracts of Dragon fruit peels using DPPH, ABTS assays and correlation with phenolic, flavonoid, carotenoid content. Int. J. Res. Pharm. Sci. 2014, 5, 104–111. [Google Scholar]
- Lavorgna, M.; Orlo, E.; Nugnes, R.; Piscitelli, C.; Russo, C.; Isidori, M. Capsaicin in hot chili peppers: In vitro evaluation of its antiradical, antiproliferative and apoptotic activities. Plant Foods Hum. Nutr. 2019, 74, 164–170. [Google Scholar] [CrossRef]
- Kgomotso, T.; Chiu, F.; Ng, K. Genistein-and daidzein 7-O-β-D-glucuronic acid retain the ability to inhibit copper-mediated lipid oxidation of low density lipoprotein. Mol. Nutr. Food Res. 2008, 52, 1457–1466. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L.; Gu, L.; Wu, X.; Jacob, R.A.; Sotoudeh, G.; Kader, A.A.; Cook, R.A. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J. Am. Coll. Nutr. 2007, 26, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Kut, K.; Bartosz, G.; Soszyński, M.; Sadowska-Bartosz, I. Antioxidant properties of hispidulin. Nat. Prod. Res. 2022, 24, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC). Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Milardović, S.; Iveković, D.; Grabarić, B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 2006, 68, 175–180. [Google Scholar] [CrossRef]
- Buettner, G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef]
- Błauz, A.; Pilaszek, T.; Grzelak, A.; Dragan, A.; Bartosz, G. Interaction between antioxidants in assays of total antioxidant capacity. Food Chem. Toxicol. 2008, 46, 2365–2368. [Google Scholar] [CrossRef]
- Tavadyan, L.A.; Minasyan, S.H. Synergistic and antagonistic co-antioxidant effects of flavonoids with trolox or ascorbic acid in a binary mixture. J. Chem. Sci. 2019, 131, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhu, C.; Liu, X.; Su, E.; Cao, F.; Zhao, L. Study on synergistic antioxidant effect of typical functional components of hydroethanolic leaf extract from Ginkgo Biloba in vitro. Molecules 2022, 27, 439. [Google Scholar] [CrossRef]
- Niki, E. Interaction of ascorbate and alpha-tocopherol. Ann. N. Y. Acad. Sci. 1987, 498, 186–199. [Google Scholar] [CrossRef]
- Kadoma, Y.; Ishihara, M.; Okada, N.; Fujisawa, S. Free radical interaction between vitamin E (alpha-, beta-, gamma- and delta-tocopherol), ascorbate and flavonoids. In Vivo 2006, 20, 823–827. [Google Scholar] [PubMed]
- Simoni, J.; Villanueva-Meyer, J.; Simoni, G.; Moeller, J.F.; Wesson, D.E. Control of oxidative reactions of hemoglobin in the design of blood substitutes: Role of the ascorbate-glutathione antioxidant system. Artif. Organs 2009, 33, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Dereven’kov, I.A.; Makarov, S.V.; Bui Thi, T.T.; Makarova, A.S.; Koifman, O.I. Studies on the reduction of dehydroascorbic acid by glutathione in the presence of aquahydroxocobinamide. Eur. J. Inorg. Chem. 2018, 2018, 2987–2992. [Google Scholar] [CrossRef]
- Aliaga, C.; Lissi, E.A. Reaction of 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) derived radicals with hydroperoxides. Kinetics and mechanism. Int. J. Chem. Kinet. 1998, 30, 565–570. [Google Scholar] [CrossRef]
Compound | A0.25 min | A6 min | A30 min | A60 min | A120 min | A180 min | t1/2 |
---|---|---|---|---|---|---|---|
ABTS• only | 0.999 | 0.025 | 0.064 | 0.101 | 0.142 | 0.171 | - |
Ascorbic acid, 10 nmol | 0.843 | 0.853 | 0.865 | 0.877 | 0.896 | 0.908 | ca 9 s |
Caffeic acid, 7 nmol | 0.458 | 0.492 | 0.550 | 0.646 | 0.789 | 0.878 | 9.84 min |
Capsaicin, 10 nmol | 0.386 | 0.549 | 0.628 | 0.669 | 0.702 | 0.730 | 3.03 min |
Capsaicin, 14 nmol | 0.444 | 0.639 | 0.770 | 0.823 | 0.891 | 0.911 | 1.14 min |
Carnosine, 50 nmol | 0.225 | 0.399 | 0.674 | 0.836 | 0.904 | 0.941 | 12.51 min |
Cyanidin, 10 nmol | 0.374 | 0.594 | 0.767 | 0.842 | 0.891 | 0.910 | 2.07 min |
Cysteine, 24 nmol | 0.448 | 0.556 | 0.708 | 0.767 | 0.803 | 0.824 | 2.65 m |
EGCG, 2 nmol | 0.506 | 0.654 | 0.768 | 0.830 | 0.887 | 0.921 | ca 15 s |
Ergothionein, 50 nmol | 0.504 | 0.574 | 0.707 | 0.834 | 0.954 | 0.955 | ca 15 s |
Ethoxyquin, 22 nmol | 0.648 | 0.684 | 0.713 | 0.737 | 0.801 | 0.826 | ca 12 s |
Ferulic acid, 10 nmol | 0.653 | 0.768 | 0.800 | 0.821 | 0.840 | 0.858 | ca 11 s |
Gallic acid, 3 nmol | 0.561 | 0.699 | 0.791 | 0.844 | 0.880 | 0.900 | ca 13 s |
Genistein, 6 nmol | 0.471 | 0.745 | 0.867 | 0.873 | 0.939 | 0.941 | ca 24 s |
Glutathione, 10 nmol | 0.505 | 0.627 | 0.797 | 0.854 | 0.885 | 0.901 | ca 15 s |
Histidine, 6.5 μmol | 0.167 | 0.411 | 0.698 | 0.866 | 0.887 | 0.948 | 10.73 min |
Mohr salt, 32 nmol | 0.693 | 0.742 | 0.770 | 0.793 | 0.799 | 0.804 | ca 11 s |
Trolox, 10 nmol | 0.947 | 0.947 | 0.948 | 0.948 | 0.948 | 0.948 | Fast reaction |
Tryptophan, 10 nmol | 0.324 | 0.730 | 0.856 | 0.886 | 0.942 | 0.948 | 55 s |
Tyrosine, 10 nmol | 0.202 | 0.662 | 0.826 | 0.863 | 0.930 | 0.940 | 2.50 min |
Parameter Amount [nmol] | Trolox | Ascorbic Acid | Ratio of Absorbance Decrease = Activity Ratio |
---|---|---|---|
Absorbance | |||
decrease | |||
0 | 0 | 0 | - |
0.5 | 0.043 | 0.042 | 0.977 |
1.0 | 0.079 | 0.094 | 1.190 |
1.5 | 0.124 | 0.115 | 0.927 |
2.0 | 0.159 | 0.170 | 1.069 |
2.5 | 0.199 | 0.222 | 1.116 |
Mean | 1.056 ± 0.105 | ||
Slope of absorbance decrease | 0.07947 ± 0.00110 | 0.08313 ± 0.00414 | 1.046 ± 0.043 |
Slope AUC | −1.2154 ± 0.0212 | −1.26113 ± 0.0346 | 1.041 ± 0.040 |
Parameter | Trolox [nmol−1] | Boletus Extract [µL−1] | Antioxidant Capacity [nmol TE/µL] |
---|---|---|---|
6 min | |||
Slope of the line of dependence of absorbance decrease on the concentration or volume | 0.07947 ± 0.00110 | 0.02797 ± 0.00029 | 0.352 ± 0.006 |
Slope of the line of dependence of AUC on the concentration or volume | −1.2154 ± 0.0212 | −0.42900 ± 0.00787 | 0.353 ± 0.068 |
60 min | |||
Slope of the line of dependence of absorbance decrease on the concentration or volume | 0.07947 ± 0.00110 | 0.04414 ± 0.00611 | 0.555 ± 0.077 |
Slope of the line of dependence of AUC on the concentration or volume | −12.547 ± 0.17923 | −6.8960 ± 0.0983 | 0.545 ± 0.008 |
Concentration Dependence of: | Compound 1 [nmol−1] | Compound 2 [nmol−1] | Calculated Sum [nmol−1] | Value Measured for Sum of Compounds >[nmol−1] | IC [%] |
---|---|---|---|---|---|
Absorbance decrease 1 min | Ascorbic acid 0.1107 ± 0.0188 | Trolox 0.1058 ± 0.0158 | 0.2165 ± 0.0246 | 0.0927 ± 0.0157 *** | 57.2 |
AUC 60 min | Ascorbic acid −10.207 ± 0.304 | Trolox −9.664 ± 0.265 | −19.871 ± 0.812 | −7.916 ± 0.458 *** | 60.2 |
Absorbance decrease 1 min | Glutathione 0.0931 ± 0.0265 | Ascorbic acid 0.1079 ± 0.0047 | 0.2010 ± 0.0269 | 0.1086 ± 0.0017 ** | 46.0 |
AUC 60 min | Glutathione −14.172 ± 2.932 | Ascorbic acid −10.312 ± 0.344 | −24.484 ± 2.952 | −16.477 ± 0.917 ** | 32.7 |
Absorbance decrease 1 min | Glutathione 0.09376 ± 0.00490 | Trolox 0.10623 ± 0.00475 | 0.1999 ± 0.0068 | 0.2198 ± 0.0161 NS | −0.1 |
AUC 60 min | Glutathione −14.708 ± 1.353 | Trolox −9.613 ± 0.530 | −24.321 ± 1.453 | −24.977 ± 2.336 NS | −0.3 |
Absorbance decrease 1 min | Hispidulin 0.22107 ± 0.03192 | Trolox 0.10626 ± 0.00201 | 0.3273 ± 0.0320 | 0.1728 ± 0.0318 ** | 47.2 |
AUC 60 min | Hispidulin −22.804 ± 2.104 | Trolox −9.670 ± 0.723 | −32.474 ± 2.225 | −25.455 ± 2.885 * | 21.6 |
Absorbance decrease 1 min | Hispidulin 0.22764 ± 0.004037 | Ascorbic acid 0.10942 ± 0.004084 | 0.3371 ± 0.0057 | 0.3287 ± 0.0074 NS | 2.5 |
AUC 60 min | Hispidulin −16.920 ± 1.372 | Ascorbic acid −8.060 ± 0.541 | −24.980 ± 1.475 | −25.137 ± 2.062 NS | −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kut, K.; Cieniek, B.; Stefaniuk, I.; Bartosz, G.; Sadowska-Bartosz, I. A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes 2022, 10, 1288. https://doi.org/10.3390/pr10071288
Kut K, Cieniek B, Stefaniuk I, Bartosz G, Sadowska-Bartosz I. A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes. 2022; 10(7):1288. https://doi.org/10.3390/pr10071288
Chicago/Turabian StyleKut, Kacper, Bogumił Cieniek, Ireneusz Stefaniuk, Grzegorz Bartosz, and Izabela Sadowska-Bartosz. 2022. "A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism" Processes 10, no. 7: 1288. https://doi.org/10.3390/pr10071288
APA StyleKut, K., Cieniek, B., Stefaniuk, I., Bartosz, G., & Sadowska-Bartosz, I. (2022). A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes, 10(7), 1288. https://doi.org/10.3390/pr10071288