Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. PAH Preparation
2.2. Bio-Fenton Reaction
2.3. Batch Experiment for Antibiotic Removal
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Effect of pH on H2O2 Generation
3.2. Bio-Fenton Pretreatment for PAH Removal
3.3. Combined Bio-Fenton with Activated Sludge for PAH Removal
3.4. Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahya, M.S.; Lau, E.V. Graphene Oxide (GO)-Coated Microbubble Flotation for Polycyclic Aromatic Hydrocarbon (PAH) Removal from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 106508. [Google Scholar] [CrossRef]
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Urbano, I.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. Removal of Polycyclic Aromatic Hydrocarbons (PAHs) in Conventional Drinking Water Treatment Processes. J. Contam. Hydrol. 2021, 243, 103888. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xu, D.; Bi, X.; Ng, H.Y.; Shi, X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresour. Technol. 2020, 314, 123715. [Google Scholar] [CrossRef]
- Pilnaj, D.; Kuráň, P.; Št’astný, M.; Pilařová, V.; Janoš, P.; Kormunda, M.; Tokarský, J. C18-Functionalized Fe3O4/SiO2 Magnetic Nano-Sorbent for PAHs Removal from Water. Environ. Technol. Innov. 2021, 24, 101905. [Google Scholar] [CrossRef]
- Gou, Y.; Ma, J.; Yang, S.; Song, Y. Insights into the Effects of Fenton Oxidation on PAH Removal and Indigenous Bacteria in Aged Subsurface Soil. Environ. Pollut. 2022, 298, 118872. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, X.; Ng, H.Y. Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater: Start-up, long-term performances and metabolic function. J. Hazard. Mater. 2021, 412, 125229. [Google Scholar] [CrossRef]
- Chu, L.; Cang, L.; Fang, G.; Sun, Z.; Wang, X.; Zhou, D.; Gao, J. A Novel Electrokinetic Remediation with In-Situ Generation of H2O2 for Soil PAHs Removal. J. Hazard. Mater. 2022, 428, 128273. [Google Scholar] [CrossRef]
- Liu, B.; Niu, W.; Hu, X.; Liu, F.; Jiang, J.; Wang, H.; Wang, S. Enhanced Oxidative Activation of Chlorine Dioxide by Divalent Manganese Ion for Efficient Removal of PAHs in Industrial Soil. Chem. Eng. J. 2022, 434, 134631. [Google Scholar] [CrossRef]
- Rosińska, A.; Dąbrowska, L. Influence of Type and Dose of Coagulants on Effectiveness of PAH Removal in Coagulation Water Treatment. Water Sci. Eng. 2021, 14, 193–200. [Google Scholar] [CrossRef]
- Zhao, D.; Fu, C.; Bi, X.; Ng, H.Y.; Shi, X. Effects of coarse and fine bubble aeration on performances of membrane filtration and denitrification in moving bed membrane bioreactors. Sci. Total Environ. 2021, 772, 145513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Li, R.; Kim, D.H.; Bi, X.; Zhang, G.; Jiang, B.; Ng, H.Y.; Shi, X. Novel intertidal wetland sediment-inoculated moving bed biofilm reactor treating high-salinity wastewater: Metagenomic sequencing revealing key functional microorganisms. Bioresour. Technol. 2022, 348, 126817. [Google Scholar] [CrossRef] [PubMed]
- Sathe, S.M.; Chakraborty, I.; Doki, M.M.; Dubey, B.K.; Ghangrekar, M.M. Waste-Derived Iron Catalyzed Bio-Electro-Fenton Process for the Cathodic Degradation of Surfactants. Environ. Res. 2022, 212, 113141. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Shi, X.; Bi, X.; Lee, L.Y.; Ng, H.Y. Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresour. Technol. 2019, 292, 121852. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ge, B.; Cao, Q.; Xi, F.; Shi, X.; Si, Y.; Wang, X.; Gao, B.; Yue, Q.; Xu, X. Application of sectionalized single-step reaction approach (SSRA) and distributed activation energy model (DAEM) on the pyrolysis kinetics model of upstream oily sludge: Construction procedure and data reproducibility comparison. Sci. Total Environ. 2021, 774, 145751. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ghatge, S.; Ko, Y.; Yoon, Y.; Ahn, J.H.; Kim, J.J.; Hur, H.G. Non-Specific Degradation of Chloroacetanilide Herbicides by Glucose Oxidase Supported Bio-Fenton Reaction. Chemosphere 2022, 292, 133417. [Google Scholar] [CrossRef]
- Yang, C.X.; Wang, L.; Zhong, Y.J.; Guo, Z.C.; Jia, L.; Yu, S.P.; Sangeetha, T.; Liu, B.L.; Ni, C.; Guo, H. Efficient Methane Production from Waste Activated Sludge and Fenton-like Pretreated Rice Straw in an Integrated Bio-Electrochemical System. Sci. Total Environ. 2022, 813, 152411. [Google Scholar] [CrossRef]
- Kong, Q.; Zhang, H.; Lan, Y.; Shi, X.; Fang, Z.; Chang, Q.; Liu, J.; Wei, C. Functional graphene oxide for organic pollutants removal from wastewater: A mini review. Environ. Technol. 2022; in press. [Google Scholar]
- Ghatge, S.; Yang, Y.; Ko, Y.; Yoon, Y.; Ahn, J.H.; Kim, J.J.; Hur, H.G. Degradation of Sulfonated Polyethylene by a Bio-Photo-Fenton Approach Usingglucose Oxidase Immobilized on Titanium Dioxide. J. Hazard. Mater. 2022, 423, 127067. [Google Scholar] [CrossRef]
- Fu, C.; Yue, X.; Shi, X.; Ng, K.K.; Ng, H.Y. Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time. Chem. Eng. J. 2017, 309, 397–408. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, J.; Zhang, Z.; Jiang, X.; Zhou, Y.; Bai, Y.; Hu, X.; Ning, H.; Hu, J. Sulfidised Nanoscale Zerovalent Iron-Modified Pitaya Peel-Derived Carbon for Enrofloxacin Degradation and Swine Wastewater Treatment: Combination of Electro-Fenton and Bio-Electro-Fenton Process. J. Hazard. Mater. 2022, 434, 128767. [Google Scholar] [CrossRef]
- Qi, Y.; Li, J.; Zhang, Y.; Cao, Q.; Si, Y.; Wu, Z.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B Environ. 2021, 286, 119910. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Cai, Y.; Wang, S. Peroxymonosulfate-Activated Molecularly Imprinted Bimetallic MOFs for Targeted Removal of PAHs and Recovery of Biosurfactants from Soil Washing Effluents. Chem. Eng. J. 2022, 443, 136412. [Google Scholar] [CrossRef]
- Qi, Y.; Guo, C.; Xu, X.; Gao, B.; Yue, Q.; Jiang, B.; Qian, Z.; Wang, C.; Zhang, Y. Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: Preparation, characterization and kinetic model. Sci. Total Environ. 2020, 715, 136982. [Google Scholar] [CrossRef]
- Darvishi Cheshmeh Soltani, R.; Naderi, M.; Boczkaj, G.; Jorfi, S.; Khataee, A. Hybrid Metal and Non-Metal Activation of Oxone by Magnetite Nanostructures Co-Immobilized with Nano-Carbon Black to Degrade Tetracycline: Fenton and Electrochemical Enhancement with Bio-Assay. Sep. Purif. Technol. 2021, 274, 119055. [Google Scholar] [CrossRef]
- Huang, S.; Pooi, C.K.; Shi, X.; Varjani, S.; Ng, H.Y. Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Sci. Total Environ. 2020, 747, 141311. [Google Scholar] [CrossRef]
- Yu, T.; Yin, H.; Cheng, L.; Bi, X. Effect of Powder-activated carbon pre-coating membrane on the performance of UF system for wastewater reclamation: A pilot-scale study. Water Reuse 2021, 11, 586–596. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Song, C.; Liu, X.; Zhang, J.; Zhang, Y.; Shi, X.; Kim, D. Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment. Processes 2022, 10, 1316. https://doi.org/10.3390/pr10071316
Wang X, Song C, Liu X, Zhang J, Zhang Y, Shi X, Kim D. Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment. Processes. 2022; 10(7):1316. https://doi.org/10.3390/pr10071316
Chicago/Turabian StyleWang, Xiaohui, Chunyan Song, Xiao Liu, Jing Zhang, Yanbo Zhang, Xueqing Shi, and Dogun Kim. 2022. "Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment" Processes 10, no. 7: 1316. https://doi.org/10.3390/pr10071316
APA StyleWang, X., Song, C., Liu, X., Zhang, J., Zhang, Y., Shi, X., & Kim, D. (2022). Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment. Processes, 10(7), 1316. https://doi.org/10.3390/pr10071316