Intelligent Model for Power Cells State of Charge Forecasting in EV
Abstract
:1. Introduction
2. Description of the System under Study
2.1. The Battery
2.2. Capacity Confirmation Test
2.3. Dataset
3. Methods
3.1. Feature Engineering
3.2. Data Windowing
3.3. LSTM
- Cell State: brings information along the entire sequence and represents the memory of the network.
- Forget Gate: decides what is relevant to keep from previous time steps.
- Input Gate : manages what information is relevant to add from the current time step.
- Output Gate: computes the value of the output at current time step.
4. Experiments and Results
4.1. Experiments
4.2. Results
4.3. Statistical Analysis
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chukwuka, C.; Folly, K.A. Batteries and super-capacitors. In Proceedings of the IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources, PowerAfrica, Johannesburg, South Africa, 9–13 July 2012; pp. 1–6. [Google Scholar]
- Atawi, I.E.; Hendawi, E.; Zaid, S.A. Analysis and Design of a Standalone Electric Vehicle Charging Station Supplied by Photovoltaic Energy. Processes 2021, 9, 1246. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, J.; Lai, J.-S. A grid-tie battery energy storage system. In Proceedings of the 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics, COMPEL, Boulder, CO, USA, 28–30 June 2010; pp. 1–5. [Google Scholar]
- Chaturvedi, N.; Klein, R.; Christensen, J.; Ahmed, J.; Kojic, A. Modeling, estimation, and control challenges for lithium-ion batteries. In Proceedings of the American Control Conference (ACC), Baltimore, MD, USA, 30 June–2 July 2010; pp. 1997–2002. [Google Scholar]
- Vukosavic, S. Electrical Machines, Power Electronics and Power; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ismail, N.H.F.; Toha, S.F. State of charge estimation of a Lithium-ion battery for electric vehicle based on particle swarm optimization. In Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2013, Kuala Lumpur, Malaysia, 25–27 November, 2013; pp. 1–4. [Google Scholar]
- Swierczynski, M.; Stroe, D.-I.; Stan, A.-I.; Teodorescu, R.; Kær, S.K. Lifetime estimation of the nanophosphate lifepo4 battery chemistry used in fully electric vehicles. IEEE Trans. Ind. Appl. 2015, 51, 3453–3461. [Google Scholar] [CrossRef]
- Ant’on, J.C.A.; Nieto, P.J.G.; Juez, F.J.d.; Lasheras, F.S.; Viejo, C.B.; Gutierrez, N.R. Battery state-of-charge estimator using the MARS technique. IEEE Trans. Power Electron. 2013, 28, 3798–3805. [Google Scholar] [CrossRef]
- Zhang, D.; Du, L.; Gao, Z. Real-Time Parameter Identification for Forging Machine Using Reinforcement Learning. Processes 2021, 9, 1848. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, Z. Improvement of Refrigeration Efficiency by Combining Reinforcement Learning with a Coarse Model. Processes 2019, 7, 967. [Google Scholar] [CrossRef]
- Jove, E.; Gonzalez-Cava, J.M.; Casteleiro-Roca, J.L.; Quintián, H.; Méndez Pérez, J.A.; Vega Vega, R.; Zayas-Gato, F.; de Cos Juez, F.J.; León, A.; Martón, M.; et al. Hybrid Intelligent Model to Predict the Remifentanil Infusion Rate in Patients Under General Anesthesia. Log. J. IGPL 2020, 29, 193–206. [Google Scholar] [CrossRef]
- Liao, T.W. Clustering of time series data—A survey. Pattern Recognit. 2005, 38, 1857–1874. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Keogh, E.J. On the need for time series data mining benchmarks. Data Min. Knowl. Discov. 2003, 7, 349–371. [Google Scholar] [CrossRef]
- Agrawal, R.; Faloutsos, C.; Swami, A. Efficient Similarity Search In Sequence Databases. In Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, USA, 13–15 October 1993; Springer: Berlin/Heidelberg, Germany, 1993; Volume 730, pp. 69–84. [Google Scholar]
- Chen, C.W.; Chiu, L.M. Ordinal Time Series Forecasting of the Air Quality Index. Entropy 2021, 23, 1167. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, L.; Zhang, G.; Xie, Y.; Liu, J. Intelligent Setting Method of Reagent Dosage Based on Time Series Froth Image in Zinc Flotation Process. Processes 2020, 8, 536. [Google Scholar] [CrossRef]
- Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2020, 69, 14413–14423. [Google Scholar] [CrossRef]
- Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June, 2012; pp. 3642–3649. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the NIPS 2012: Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Google’s AlphaGo AI wins Three-Match Series against the World’s Best Go Player. 2018. Available online: https://www.bbc.com/news/technology-40042581 (accessed on 5 July 2022).
- Dupond, S. A thorough review on the current advance of neural network structures. Annu. Rev. Control. 2019, 14, 200–230. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed]
- Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [Google Scholar] [CrossRef]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling; Interspeech: Singapore, 2014. [Google Scholar]
- Li, X.; Wu, X. Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Yeow, K.; Teng, H.; Thelliez, M.; Tan, E. Thermal analysis of a li-ion battery system with indirect liquid cooling using finite element analysis approach. Sae Int. J. Altern. Powertrains 2012, 1, 65–78. [Google Scholar] [CrossRef]
- Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E.C.; O’Keefe, M.A. Atomic resolution of lithium ions in licoo2. Nat. Mater. 2003, 2, 464–467. [Google Scholar] [CrossRef]
- Julien, C. Local structure of lithiated manganese oxides. Solid State Ion. 2006, 177, 11–19. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Bloking, J.T.; Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Cakici, M.; Kakarla, R.R.; Alonso-Marroquin, F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like mno2 structured electrodes. Chem. Eng. J. 2017, 309, 151–158. [Google Scholar] [CrossRef]
- Ma, Y.; Chang, H.; Zhang, M.; Chen, Y. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 2015, 27, 5296–5308. [Google Scholar] [CrossRef]
- Beard, K.W. Linden’s Handbook of Batteries; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Yi, J.; Kim, U.S.; Shin, C.B.; Han, T.; Park, S. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J. Electrochem. Soc. 2013, 160, A437. [Google Scholar] [CrossRef]
- Arora, P.; White, R.E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647. [Google Scholar] [CrossRef]
- Takahashi, M.; Tobishima, S.I.; Takei, K.; Sakurai, Y. Reaction behavior of lifepo4 as a cathode material for rechargeable lithium batteries. Solid State Ion. 2002, 148, 283–289. [Google Scholar] [CrossRef]
- Pan, Y.; Chou, S.; Liu, H.K.; Dou, S.X. Functional membrane separators for next-generation high-energy rechargeable batteries. Natl. Sci. Rev. 2017, 4, 917–933. [Google Scholar] [CrossRef]
- Hoke, A.; Brissette, A.; Smith, K.; Pratt, A.; Maksimovic, D. Accounting for lithium-ion battery degradation in electric vehicle charging optimization. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 691–700. [Google Scholar] [CrossRef]
- Neubauer, J.; Wood, E. Will Your Battery Survive a World with Fast Chargers? Technical Report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2015. [Google Scholar]
- Lu, Z.; Yu, X.; Wei, L.; Cao, F.; Zhang, L.; Meng, X.; Jin, L. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Appl. Therm. Eng. 2019, 158, 113800. [Google Scholar] [CrossRef]
- Zhou, F.; Bao, C. Analysis of the lithium-ion battery capacity degradation behavior with a comprehensive mathematical model. J. Power Sources 2021, 515, 230630. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Sparacino, A.R.; Reed, G.F.; Kerestes, R.J.; Grainger, B.M.; Smith, Z.T. Survey of battery energy storage systems and modeling techniques. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Mauger, A.; Julien, C.M. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23, 1933–1947. [Google Scholar] [CrossRef]
- PNGV Battery Test Manual (3 2001). Available online: https://avt.inl.gov/sites/default/files/pdf/battery/pngv_manual_rev3b.pdf (accessed on 18 May 2022).
- Report, T. Lifebatt x-1p 8ah 38123 Cell; Technical Report; LiFeBATT Ltd.: Eastwoodbury Lane, UK, 2009. [Google Scholar]
- Sparacino, A.R.; Reed, G.F.; Kerestes, R.J.; Grainger, B.M.; Smith, Z.T. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar]
- Million, E. The Hadamard Product. 2007. Available online: http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf (accessed on 22 June 2022).
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.G.; Heryadi, Y.; Abdurahman, E.; Suparta, W. Single Layer and Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Comput. Sci. 2018, 135, 89–98. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, Version 2.7. Available online: http://www.python.org (accessed on 25 June 2022).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 25 June 2022).
- Casteleiro-Roca, J.L.; Jove, E.; Sánchez-Lasheras, F.; Méndez-Pérez, J.A.; Calvo-Rolle, J.L.; de Cos Juez, F.J. Power Cell SOC Modelling for Intelligent Virtual Sensor Implementation. J. Sens. 2017, 2017, 9640546. [Google Scholar] [CrossRef]
- Kruskal–Wallis H Test Using SPSS Statistics, Laerd Statistics. Available online: https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php (accessed on 25 June 2022).
- Lowry, R. One Way ANOVA—Independent Samples. Available online: http://facultysites.vassar.edu/lowry/PDF/c14p1.pdf (accessed on 25 June 2022).
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Gruber, N.; Jockisch, A. Are GRU cells more specific and LSTM cells more sensitive in motive classification of text? Front. Artif. Intell. 2020, 3, 40. [Google Scholar] [CrossRef]
Variables Values | |||||
---|---|---|---|---|---|
Samples | Sample-Time (s) | Amps (I) | Volts (V) | T1 (°C) | T2 (°C) |
16,370 | 1 | [−32.04, 32.05] | [2, 3.65] | [37.43, 41.80] | [36.15, 40.56] |
Hyperparameters Space | Training Parameters | |||
---|---|---|---|---|
LSTM Units | Neurons | Batch Size | K-Folds | Epochs |
[1–3] | [32–40] | [32–40] | 10 | 50 |
Windows | |||||
---|---|---|---|---|---|
Model | Metrics | 15 | 30 | 60 | 120 |
SS | MAE (%) | 0.148933 | 0.250346 | 0.366923 | 0.766663 |
MSE | 0.000299 | 0.000600 | 0.001315 | 0.005677 | |
MAPE (%) | 7.259039 | 9.656219 | 9.977581 | 54.853806 | |
R | 0.999738 | 0.999473 | 0.998836 | 0.994919 | |
AR | MAE (%) | 0.152125 | 0.251448 | 0.446577 | 1.281911 |
MSE | 0.000248 | 0.000666 | 0.001812 | 0.013689 | |
MAPE (%) | 4.797170 | 5.755136 | 11.760392 | 77.755592 | |
R | 0.999782 | 0.999416 | 0.998395 | 0.987729 |
p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|
MAE | MSE | MAPE | R | ||||||
Models | Holm | Tukey | Holm | Tukey | Holm | Tukey | Holm | Tukey | |
AR | AR | 0 | 0.001 | 0 | 0.001 | 0.0347 | 0.001 | 0.0002 | 0.001 |
AR | AR | 0 | 0.001 | 0 | 0.001 | 0.049 | 0.001 | 0.0002 | 0.001 |
AR | AR | 0 | 0.001 | 0.0001 | 0.001 | 0.3487 | 0.001 | 0.0007 | 0.001 |
AR | SS | 0.2262 | 0.0906 | 0.7203 | 0.9 | 0.6894 | 0.1168 | 0.436 | 0.6574 |
AR | SS | 0 | 0.001 | 0 | 0.001 | 0.049 | 0.001 | 0.0002 | 0.001 |
AR | SS | 0 | 0.001 | 0 | 0.001 | 0.0578 | 0.001 | 0.0004 | 0.001 |
AR | SS | 0 | 0.001 | 0.0004 | 0.001 | 0.1697 | 0.001 | 0.0032 | 0.001 |
AR | AR | 0 | 0.0988 | 0.0001 | 0.9 | 0.6894 | 0.9 | 0.0002 | 0.9 |
AR | AR | 0 | 0.001 | 0 | 0.0071 | 0.2934 | 0.4679 | 0 | 0.0027 |
AR | SS | 0 | 0.001 | 0.0002 | 0.001 | 0.0514 | 0.0011 | 0 | 0.001 |
AR | SS | 0.0012 | 0.9 | 0.0004 | 0.9 | 1 | 0.9 | 0.0002 | 0.9 |
AR | SS | 0 | 0.0042 | 0 | 0.1262 | 0.6123 | 0.9 | 0 | 0.0777 |
AR | SS | 0 | 0.001 | 0 | 0.001 | 0.049 | 0.8011 | 0 | 0.001 |
AR | AR | 0 | 0.001 | 0 | 0.1233 | 0.3478 | 0.7034 | 0 | 0.0728 |
AR | SS | 0 | 0.001 | 0.0004 | 0.001 | 0.046 | 0.0044 | 0 | 0.001 |
AR | SS | 0 | 0.5479 | 0.0282 | 0.9 | 0.6894 | 0.9 | 0.016 | 0.9 |
AR | SS | 0.0092 | 0.9 | 0 | 0.6601 | 1 | 0.9 | 0 | 0.5819 |
AR | SS | 0 | 0.001 | 0 | 0.001 | 0.3478 | 0.9 | 0 | 0.001 |
AR | SS | 0.0001 | 0.001 | 0.0009 | 0.001 | 0.6599 | 0.3039 | 0 | 0.001 |
AR | SS | 0 | 0.001 | 0 | 0.0523 | 0.0903 | 0.5032 | 0 | 0.0235 |
AR | SS | 0 | 0.0041 | 0.0282 | 0.9 | 0.6123 | 0.8048 | 0.016 | 0.9 |
AR | SS | 0.0215 | 0.7539 | 0.0021 | 0.3463 | 1 | 0.9 | 0.0023 | 0.2844 |
SS | SS | 0 | 0.001 | 0.0004 | 0.001 | 0.046 | 0.0014 | 0 | 0.001 |
SS | SS | 0 | 0.001 | 0.0008 | 0.001 | 0.0651 | 0.0077 | 0 | 0.001 |
SS | SS | 0.0002 | 0.001 | 0.0066 | 0.001 | 0.3487 | 0.0922 | 0 | 0.001 |
SS | SS | 0 | 0.0683 | 0 | 0.4552 | 0.6894 | 0.9 | 0 | 0.3292 |
SS | SS | 0 | 0.001 | 0 | 0.001 | 0.0903 | 0.8349 | 0 | 0.001 |
SS | SS | 0 | 0.001 | 0 | 0.0326 | 0.6894 | 0.9 | 0 | 0.0184 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, V.; Jove, E.; Zayas Gato, F.; Pinto-Santos, F.; Piñón-Pazos, A.J.; Casteleiro-Roca, J.-L.; Quintian, H.; Calvo-Rolle, J.L. Intelligent Model for Power Cells State of Charge Forecasting in EV. Processes 2022, 10, 1406. https://doi.org/10.3390/pr10071406
López V, Jove E, Zayas Gato F, Pinto-Santos F, Piñón-Pazos AJ, Casteleiro-Roca J-L, Quintian H, Calvo-Rolle JL. Intelligent Model for Power Cells State of Charge Forecasting in EV. Processes. 2022; 10(7):1406. https://doi.org/10.3390/pr10071406
Chicago/Turabian StyleLópez, Víctor, Esteban Jove, Francisco Zayas Gato, Francisco Pinto-Santos, Andrés José Piñón-Pazos, Jose-Luis Casteleiro-Roca, Hector Quintian, and Jose Luis Calvo-Rolle. 2022. "Intelligent Model for Power Cells State of Charge Forecasting in EV" Processes 10, no. 7: 1406. https://doi.org/10.3390/pr10071406
APA StyleLópez, V., Jove, E., Zayas Gato, F., Pinto-Santos, F., Piñón-Pazos, A. J., Casteleiro-Roca, J. -L., Quintian, H., & Calvo-Rolle, J. L. (2022). Intelligent Model for Power Cells State of Charge Forecasting in EV. Processes, 10(7), 1406. https://doi.org/10.3390/pr10071406