The Positive and Negative Synergistic Airflow-Type Jujube Fruit Harvester (P-N JH)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the P-N JH
2.2.1. Structure
2.2.2. Working Principle
2.2.3. Technology Parameters
2.3. Tests Methods and Performance Evaluation
2.4. Experimental Data Process
3. Results and Discussion
3.1. Pickup Rate
3.2. Impurities Rate
3.3. Damage Rate
3.4. Optimal Parameters
3.5. Verification Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Li, N. Effects of carbon monoxide on quality, nutrients and antioxidant activity of post-harvest jujube. J. Sci. Food Agric. 2014, 94, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Peng, Q.; Yuan, Y.; Shen, J.; Xie, X.; Wang, M. Isolation, structures and bio-activities of the polysaccharides from jujube fruit (Zizyphus jujuba Mill.): A review. Food Chem. 2017, 227, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Peng, J.; Sun, S.; Al-Mallahi, A.; Fu, L. Determination of selected physical and mechanical properties of Chinese jujube fruit and seed. Agric. Eng. Int. CIGR E-J. 2016, 18, 294–300. [Google Scholar]
- Huang, J.; Chen, X.; He, A.; Ma, Z.; Gong, T.; Xu, K.; Chen, R. Integrative Morphological, Physiological, Proteomics Analyses of Jujube Fruit Development Provide Insights into Fruit Quality Domestication from Wild Jujube to Cultivated Jujube. Front. Plant Sci. 2021, 12, 773825. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Lou, H.; Zheng, H.; Hu, Y.; Li, Y. Nondestructive Evaluation of Quality Changes and the Optimum Time for Harvesting During Jujube (Zizyphus jujuba Mill. cv. Changhong) Fruits Development. Food Bioprocess Technol. 2012, 5, 2586–2595. [Google Scholar] [CrossRef]
- Fu, L.; Al-Mallahi, A.; Peng, J.; Sun, S.; Feng, Y.; Li, R.; He, D.; Cui, Y. Harvesting technologies for Chinese jujube fruits: A review. Eng. Agric. Environ. Food 2017, 10, 171–177. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Z.; Ding, K.; Cao, W.; Kan, Z.; Pan, J.; Liu, Y. Design and test of 4ZZ-4A2 full-hydraulic self-propelled jujube harvester. Int. J. Agric. Biol. Eng. 2018, 11, 98–104. [Google Scholar] [CrossRef]
- Fu, W.; Yang, H.; Wang, L.; He, R.; Sun, Y. 4ZZ-4 type self-propelled dates harvester. Hunan Agric. Mach. 2012, 39, 68–69. [Google Scholar]
- Zhang, Y.; Kan, Z.; Li, C.; Fu, W.; Wang, L.; Li, L. Design of Dwarf and Close Planting Jujube Harvester Pickup Device. Agric. Mech. Res. 2016, 38, 71–75. [Google Scholar]
- Tang, Z.; Shen, C.; Meng, X.; Jia, S.; Zhou, Y.; Zheng, X. Development of 4YS-24 jujube harvester. Xinjiang Agric. Mech. 2010, 1, 30–32. [Google Scholar]
- Lu, B. Design and Experimental Study of Electric Self-Propelled Ground Jujube Harvester by Cleaning and Collecting; Tarim University: Tarim, China, 2014. [Google Scholar]
- Zhou, Y.; Kan, Z.; Li, C.; Zhang, H.; Fu, W.; Cui, J. The research and Development of The Falling Tree Fruits and Nuts Collect and Pick-up Technology. J. Agric. Mech. Res. 2017, 39, 256–263. [Google Scholar]
- Zhang, X.; Bai, S.; Jin, W.; Yuan, P.; Yu, M.; Yan, J.; Zhang, C. Development of pneumatic collecting machine of red jujube in dwarfing and closer cultivation. Trans. Chin. Soc. Agric. Eng. 2019, 35, 1–9. [Google Scholar]
- Shi, G.; Ma, S. Design and Experiment of Air-suction Red Dates Picking Machinery. Agric. Eng. 2014, 4, 109–112. [Google Scholar]
- Zhang, F.; Yu, F.; Li, Z.; Zhang, H.; Lan, H.; Li, P.; Zhang, C. Design and test of the air suction machine for picking jujube. J. Fruit Sci. 2020, 37, 278–285. [Google Scholar]
- Zhang, F.; Ran, J.; Li, Z.; Wang, D.; Li, P. Optimization of working parameters of air-suction machine for picking up ground jujube. J. Fruit Sci. 2021, 38, 1190–1200. [Google Scholar]
- Yuan, P.; Li, S.; Han, C.; Zhang, J.; Xu, Y. 0 Design and testing of a sweep and air suction pick-up jujube harvesting machinery hydraulic system. J. China Agric. Mech. 2021, 42, 28–33. [Google Scholar]
- Zhang, M.; Zhang, Y.; Zhang, T.; Liu, X.; Zhang, F.; Wu, Q.; Liu, F.; Guo, Y. Design Optimization of Subway-Track Sweeper: A Simulation Study. Chin. J. Vac. Sci. Technol. 2019, 39, 273–278. [Google Scholar]
- Wu, Q.; Zhang, Y.; Xu, B.; Guo, Y.; Song, N.; Liu, F. Similarity and Difference of Direct/Tornado Suction Modes of road Sweeper: A Simulation Study. Chin. J. Vac. Sci. Technol. 2020, 40, 302–307. [Google Scholar]
- Wang, L.; Li, Y.; Liang, C.; Ma, J.; Zhou, W. Motion Law of Maize Mixture in Cross Air-and-screen Cleaning Device. Trans. Chin. Soc. Agric. Mach. 2015, 46, 122–127. [Google Scholar]
- Li, Y.; Xu, L.; Zhou, Y.; Li, B.; Liang, Z.; Li, Y. Effects of throughput and operating parameters on cleaning performance in air-and-screen cleaning unit: A computational and experimental study. Comput. Electron. Agric. 2018, 152, 141–148. [Google Scholar] [CrossRef]
- Dai, F.; Song, X.; Zhao, W.; Han, Z.; Zhang, F.; Zhang, S. Motion simulation and test on threshed grains in tapered threshing and transmission device for plot wheat breeding based on CFD-DEM. Int. J. Agric. Biol. Eng. 2019, 12, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Mahawar, M.; Bibwe, B.; Jalgaonkar, K.; Ghodki, B. Mass modeling of kinnow mandarin based on some physical attributes. J. Food Process Eng. 2019, 42, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, S.; Jin, W.; Yu, M.; Yan, J.; Zhang, C. Experimental study on characteristics of jujube material in dwarf dense planting mode. J. Chin. Agric. Mech. 2019, 40, 68–72. [Google Scholar]
- GB/T5667-2008; Agricultural Machinery Production Test Method. China Standard Press: Beijing, China, 2009.
- DG/T 188-2019; Fruit Picker. Xinjiang Publishing and Printing Group Corporation: Xinjiang, China, 2019.
- Bora, G.; Ehsani, R. Evaluation of a Self-Propelled Citrus Fruit Pick-Up Machine. Appl. Eng. Agric. 2009, 25, 863–868. [Google Scholar] [CrossRef]
- Xu, T.; Wang, L.; Kan, Z.; Zhu, X.; Pen, H. Finite element analysis on mechanical collision of jujube in the process of picking-up. Food Ind. 2019, 40, 176–180. [Google Scholar]
- Yu, F.; Li, P.; Zhang, F.; Zhang, H.; Li, Z.; Fan, X. Experiment Determination and Analysis of Suspension Velocity Characteristic for Red Jujube. J. Chin. Agric. Mech. 2020, 41, 89–94. [Google Scholar]
- Manson, A. Response Surface Methodology. Technometric 2008, 15, 936–938. [Google Scholar] [CrossRef]
- Berger, P.; Maurer, R.; Celli, G. Introduction to Response-Surface Methodology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Wu, B.; Men, J.; Chen, J. Numerical study on particle removal performance of pickup head for a street vacuum sweeper. Powder Technol. 2010, 200, 16–24. [Google Scholar] [CrossRef]
- Wu, B.; Men, J.; Chen, J. Numerical Investigation of Dusts Removal from Tramway Surface by Street Vacuum Sweeper. Adv. Mat. Res. 2011, 236–238, 1619–1622. [Google Scholar] [CrossRef]
Items | Values/Type |
---|---|
Rated power/kW | 40 |
Unity machine dimensions (Length × width × height)/(mm × mm × mm) | 2840 × 1320 × 1710 |
Centrifugal fan model | Y5-47 |
Travel speed/(km/h) | 0–3 (continuously variable) |
Operation width/m | ≤0.65 |
Pick up rate/% | ≥96 |
Impurities rate/% | ≤3 |
Damage rate/% | ≤1.5 |
No. | Factors | Interval Levels |
---|---|---|
1 | Positive airflow velocity A/(m∙s−1) | 14~26 |
2 | Negative airflow velocity B/(m∙s−1) | 24~36 |
3 | Travel speed C/(m∙s−1) | 0.9~1.8 |
4 | Performance indexes | pickup rate, impurities rate, damage rate |
Level | Positive Airflow Velocity A/(m∙s−1) | Negative Airflow Velocity B/(m∙s−1) | Travel Speed C/(m∙s−1) |
---|---|---|---|
−1.682 | 10.93 | 25.27 | 0.59 |
−1 | 14.00 | 28.00 | 0.90 |
0 | 18.50 | 32.00 | 1.35 |
1 | 23.00 | 36.00 | 1.80 |
+1.682 | 26.07 | 38.73 | 2.11 |
No. | Factors | Indexes | ||||
---|---|---|---|---|---|---|
Positive Airflow Velocity A/(m∙s−1) | Negative Airflow Velocity B/(m∙s−1) | Travel Speed C/(m∙s−1) | Pickup Rate/(%) | Impurities Rate/(%) | Damage Rate/(%) | |
1 | 14.00 | 28.00 | 0.90 | 99.55 | 1.86 | 0.66 |
2 | 23.00 | 28.00 | 0.90 | 99.24 | 1.08 | 0.88 |
3 | 14.00 | 36.00 | 0.90 | 98.69 | 2.94 | 1.27 |
4 | 23.00 | 36.00 | 0.90 | 99.31 | 2.68 | 1.30 |
5 | 14.00 | 28.00 | 1.80 | 98.21 | 2.10 | 0.18 |
6 | 23.00 | 28.00 | 1.80 | 98.72 | 1.23 | 0.38 |
7 | 14.00 | 36.00 | 1.80 | 97.61 | 2.02 | 1.13 |
8 | 23.00 | 36.00 | 1.80 | 98.99 | 2.16 | 1.12 |
9 | 10.93 | 32.00 | 1.35 | 97.38 | 1.86 | 0.99 |
10 | 26.07 | 32.00 | 1.35 | 98.23 | 0.89 | 1.18 |
11 | 18.50 | 25.27 | 1.35 | 99.75 | 0.88 | 0.37 |
12 | 18.50 | 38.73 | 1.35 | 99.09 | 3.21 | 1.48 |
13 | 18.50 | 32.00 | 0.59 | 99.81 | 2.54 | 0.85 |
14 | 18.50 | 32.00 | 2.11 | 98.62 | 2.21 | 0.33 |
15 | 18.50 | 32.00 | 1.35 | 99.11 | 1.77 | 0.90 |
16 | 18.50 | 32.00 | 1.35 | 98.98 | 1.72 | 0.94 |
17 | 18.50 | 32.00 | 1.35 | 99.18 | 1.35 | 0.93 |
18 | 18.50 | 32.00 | 1.35 | 99.04 | 1.68 | 0.87 |
19 | 18.50 | 32.00 | 1.35 | 99.11 | 2.12 | 0.92 |
20 | 18.50 | 32.00 | 1.35 | 99.13 | 1.76 | 0.91 |
Source | Sum of Squares | DF | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Model | 25.55 | 9 | 2.84 | 256.97 | <0.001 ** |
A | 0.70 | 1 | 0.70 | 63.41 | <0.001 ** |
B | 11.80 | 1 | 11.80 | 1068.52 | <0.001 ** |
C | 2.18 | 1 | 2.18 | 197.68 | <0.001 ** |
AB | 0.020 | 1 | 0.020 | 1.81 | 0.2082 NS |
AC | 1.79 | 1 | 1.79 | 161.66 | <0.001 ** |
BC | 0.64 | 1 | 0.64 | 57.79 | <0.001 ** |
A2 | 4.040 | 1 | 4.04 | 366.11 | <0.001 ** |
B2 | 4.81 | 1 | 4.81 | 435.05 | <0.001 ** |
C2 | 0.050 | 1 | 0.047 | 4.26 | 0.0061 ** |
Residual | 0.11 | 10 | 0.011 | ||
Lack of fit | 0.090 | 5 | 0.017 | 3.40 | 0.1025 NS |
Pure error | 0.030 | 5 | 0.0050 | ||
Cor total | 25.66 | 19 | |||
R2 = 0.9957; R2adj = 0.9818; C.V. = 0.11%; RPred = 0.9732 |
Source | Sum of Squares | DF | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Model | 7.11 | 9 | 0.79 | 13.79 | <0.001 ** |
A | 0.85 | 1 | 0.85 | 14.78 | 0.0032 * |
B | 4.06 | 1 | 4.06 | 70.88 | <0.001 ** |
C | 0.19 | 1 | 0.19 | 3.29 | 0.010 * |
AB | 0.29 | 1 | 0.29 | 5.11 | 0.047 * |
AC | 0.012 | 1 | 0.012 | 0.21 | 0.66 NS |
BC | 0.42 | 1 | 0.42 | 7.30 | 0.022 * |
A2 | 0.18 | 1 | 0.18 | 3.21 | 0.10 NS |
B2 | 0.22 | 1 | 0.22 | 3.86 | 0.078 NS |
C2 | 0.83 | 1 | 0.83 | 14.55 | 0.0034 * |
Residual | 0.57 | 10 | 0.057 | ||
Lack of fit | 0.27 | 5 | 0.054 | 0.90 | 0.54NS |
Pure error | 0.30 | 5 | 0.060 | ||
Cor total | 7.69 | 19 | |||
R2 = 0.9254; R2adj = 0.8583; C.V. = 12.58%; RPred = 0.6690. |
Source | Sum of Squares | DF | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Model | 2.27 | 9 | 0.25 | 684.36 | <0.001 ** |
A | 0.040 | 1 | 0.042 | 114.72 | <0.001 ** |
B | 1.54 | 1 | 1.54 | 4183.60 | <0.001 ** |
C | 0.35 | 1 | 0.35 | 940.29 | <0.001 ** |
AB | 0.020 | 1 | 0.020 | 54.31 | <0.001 ** |
AC | 0.00045 | 1 | 0.00045 | 1.22 | 0.29 NS |
BC | 0.054 | 1 | 0.054 | 147.87 | 0.040 * |
A2 | 0.055 | 1 | 0.055 | 148.06 | <0.001 ** |
B2 | 0.00035 | 1 | 0.00035 | 0.95 | 0.35 NS |
C2 | 0.19 | 1 | 0.19 | 504.19 | 0.042 * |
Residual | 0.0037 | 10 | 0.00037 | ||
Lack of fit | 0.00060 | 5 | 0.00012 | 0.19 | 0.95 NS |
Pure error | 0.0031 | 5 | 0.00062 | ||
Cor total | 2.27 | 19 | |||
R2 = 0.9984; R2adj = 0.9969; C.V. = 2.18%; RPred = 0.9960. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Hua, Y.; He, J.; Chen, Q. The Positive and Negative Synergistic Airflow-Type Jujube Fruit Harvester (P-N JH). Processes 2022, 10, 1486. https://doi.org/10.3390/pr10081486
Xu H, Hua Y, He J, Chen Q. The Positive and Negative Synergistic Airflow-Type Jujube Fruit Harvester (P-N JH). Processes. 2022; 10(8):1486. https://doi.org/10.3390/pr10081486
Chicago/Turabian StyleXu, Hongzhen, Yong Hua, Jie He, and Qingli Chen. 2022. "The Positive and Negative Synergistic Airflow-Type Jujube Fruit Harvester (P-N JH)" Processes 10, no. 8: 1486. https://doi.org/10.3390/pr10081486
APA StyleXu, H., Hua, Y., He, J., & Chen, Q. (2022). The Positive and Negative Synergistic Airflow-Type Jujube Fruit Harvester (P-N JH). Processes, 10(8), 1486. https://doi.org/10.3390/pr10081486