Li/Na Ion Storage Performance of a FeOF Nano Rod with Controllable Morphology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of FeOF Nanorods
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results
3.1. Electrochemical Performances in Li-Ion Battery
3.2. Electrochemical Performances of FeOF in Na-Ion Battery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Zhao, H.; Yue, L.; Liang, J.; Li, T.; Liu, Q.; Luo, Y.; Kong, X.; Lu, S.; Shi, X.; et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 2021, 122, 106881. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Xu, H.; Yan, Q.; Yao, W.; Lee, C.-S.; Tang, Y. Mainstream optimization strategies for cathode materials of Sodium-Ion Batteries. Small Struct. 2022, 3, 2100217. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wei, K.; Ma, S.; Liu, X.; Zhao, Y.; Cui, Y. In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition. Ionics 2020, 26, 3367–3375. [Google Scholar] [CrossRef]
- Olbrich, F.L.; Xiao, W.A.; Pasta, M. Conversion-type fluoride cathodes: Current state of the art. Curr. Opin. Electrochem. 2021, 30, 100779. [Google Scholar] [CrossRef]
- Huang, Q.; Turcheniuk, K.; Ren, X.; Magasinski, A.; Song, A.Y.; Xiao, Y.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat Mater. 2019, 18, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Hu, E.; Ji, X.; Zhu, Y.; Han, F.; Hwang, S.; Liu, J.; Bak, S.; Ma, Z.; Gao, T.; et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 2018, 9, 2324. [Google Scholar] [CrossRef]
- Murugesan, V.; Cho, J.S.; Govind, N.; Andersen, A.; Olszta, M.J.; Han, K.S.; Li, G.; Lee, H.; Reed, D.M.; Sprenkle, V.L.; et al. Lithium Insertion Mechanism in Iron Fluoride Nanoparticles Prepared by Catalytic Decomposition of Fluoropolymer. ACS Appl. Energy Mater. 2019, 2, 1832–1843. [Google Scholar] [CrossRef]
- Li, T.; Qin, A.; Wang, H.; Wu, M.; Zhang, Y.; Zhang, Y.; Zhang, D.; Xu, F. A high-performance hybrid Mg2+/Li+ battery based on hierarchical copper sulfide microflowers conversion cathode. Electrochim. Acta 2018, 263, 168–175. [Google Scholar] [CrossRef]
- Li, Y. Metal sulfide as catalysts enabling fast polysulfide conversion for high electrochemical performance Li-S batteries. Ionics 2022, 28, 2227–2231. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S.; Chen, Z.; Bao, R. Interactive effect of electrode potential on pollutants conversion in denitrifying sulfide removal microbial fuel cells. Chem. Eng. J. 2018, 339, 442–449. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Yang, J.; Zhu, Y.; Lu, C.; Zhang, K.; Weng, G.; Zou, J. Lithium-Salt Controlled Electrolyte and Flower-Like Cobalt Sulfide Cathode for High-Performance Magnesium Lithium Dual Ion Batteries. ChemNanoMat 2021, 7, 641–650. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Li, M.; Chen, B.; Lei, H.; Hu, H.; Wang, X. Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3·0.33H2O micro-sized spheres with controllable morphology. J. Alloy. Compd. 2020, 829, 154215. [Google Scholar] [CrossRef]
- Punyapu, V.R.; Ding, Y.; Simon Ng, K.Y.; Deng, D. Binary Fe/Mn-Based Nanocomposites as Li-Free Cathode Materials for Li Batteries Assembled in Charged State. Ind. Eng. Chem. Res. 2022, 61, 7474–7479. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Zangiabadi, A.; Li, Z.; Xiao, X.; Huang, W.; Cheng, Q.; Lou, S.; Zhang, H.; Cao, A.; et al. FeOF/TiO2 Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes. ACS Appl. Mater. Interfaces 2020, 12, 33803–33809. [Google Scholar] [CrossRef]
- Zhai, J.; Lei, Z.; Sun, K. 3D Starfish-Like FeOF on Graphene Sheets: Engineered Synthesis and Lithium Storage Performance. Chem. Eur. J. 2019, 25, 7733–7739. [Google Scholar] [CrossRef]
- Maulana, A.Y.; Song, J.; Lee, C.E.; Kim, J. Enhanced electrochemical performance of graphitic carbon-wrapped spherical FeOF nanoparticles using maleopimaric acid as a cathode material for sodium-ion batteries. J. Mater. Sci. Technol. 2021, 85, 184–193. [Google Scholar] [CrossRef]
- Yanuar, M.A.; Kim, J. FeOF nanoparticles wrapped by graphitic carbon layers prepared from Fe-MIL-88B as a cathode material for sodium-ion batteries. Carbon 2019, 149, 483–491. [Google Scholar] [CrossRef]
- Hwang, I.; Jung, S.-K.; Cho, S.-P.; Kang, K. In operando formation of new iron-oxyfluoride host structure for Na-ion storage from NaF-FeO nanocomposite. Energy Storage Mater. 2019, 23, 427–433. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, D. Wet-Chemical Synthesis of Phase-Pure FeOF Nanorods as High-Capacity Cathodes for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2015, 54, 3079–3083. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Luo, C.; Lamb, J.; Zhu, Y.; Xu, K.; Wang, C. PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries. Nano Lett. 2015, 15, 7650–7656. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, X.; Wei, S.; Hu, H.; Zhang, R.; Liu, L. Cr-doped Fe2F5 center dot H2O with open framework structure as a high performance cathode material of sodium-ion batteries. Electrochim. Acta 2018, 269, 479–489. [Google Scholar] [CrossRef]
- Lin, C.F.; Fan, X.; Pearse, A.; Liou, S.C.; Gregorczyk, K.; Leskes, M.; Wang, C.; Lee, S.B.; Rubloff, G.W.; Noked, M. Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection. Chem. Mater. 2017, 29, 8780–8791. [Google Scholar] [CrossRef]
- Kitajou, A.; Komatsu, H.; Nagano, R.; Okada, S. Synthesis of FeOF using roll-quenching method and the cathode properties for lithium-ion battery. J. Power Sources 2013, 243, 494–498. [Google Scholar] [CrossRef]
- Wang, L.P.; Wang, T.S.; Zhang, X.D.; Liang, J.Y.; Jiang, L.; Yin, Y.X.; Guo, Y.G.; Wang, C.R. Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. J. Mater. Chem. A 2017, 5, 18464–18468. [Google Scholar] [CrossRef]
- Pagot, G.; Bandiera, M.; Vezzù, K.; Migliori, A.; Bertoncello, R.; Negro, E.; Morandi, V.; Di Noto, V. High valence transition metal-doped olivine cathodes for superior energy and fast cycling lithium batteries. J. Mater. Chem. A 2020, 8, 25727–25738. [Google Scholar] [CrossRef]
- Pagot, G.; Bertasi, F.; Nawn, G.; Negro, E.; Delpeuch, A.B.; Vezzù, K.; Cristofori, D.; Di Noto, V. Effect of Graphite and Copper Oxide on the Performance of High Potential Li Fe1/3Ni1/3Co1/3 PO4 Olivine Cathodes for Lithium Batteries. Electrochim. Acta 2017, 225, 533–542. [Google Scholar] [CrossRef]
- Gu, R.; Ma, Z.; Cheng, T.; Lyu, Y.; Nie, A.; Guo, B. Improved Electrochemical Performances of LiCoO2 at Elevated Voltage and Temperature with an In Situ Formed Spinel Coating Layer. ACFS Appl. Mater. Interfaces 2018, 10, 31271–31279. [Google Scholar] [CrossRef]
- Jain, R.; Lakhnot, A.S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R.A.; Kamble, M.; Han, F.; Wang, C.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 1–11. [Google Scholar] [CrossRef]
- Park, M.; Shim, J.H.; Kim, H.; Park, H.; Kim, N.; Kim, J. FeOF ellipsoidal nanoparticles anchored on reduced graphene oxides as a cathode material for sodium-ion batteries. J. Power Sources 2018, 396, 551–558. [Google Scholar] [CrossRef]
Sample | [hkl] Values | 2θ (°) | FWHM (°) | Grain Size (Å) |
---|---|---|---|---|
FeOF | 110 | 26.9 | 0.377 | 226 |
101 | 35.2 | 0.268 | 340 | |
211 | 53.1 | 0.396 | 233 | |
FeF3·3H2O | 110 | 16.1 | 0.200 | 473 |
200 | 22.8 | 0.165 | 638 | |
101 | 25.8 | 0.173 | 594 |
Sample Number | Voltage (V vs. Li/Li+) | Current Density (mA/g) | Capacity (mAh/g) | Cycle Number | Reference |
---|---|---|---|---|---|
1 | 1.2–4.0 | 100 | 178 | 50 | This work |
100 | 145 | 100 | |||
2 | 1.0–4.0 | 100 | 104 | 50 | [15] |
3 | 1.2–4.0 | 300 | 75 | 100 | [23] |
4 | 2.0–4.0 | 10 | 180 | 30 | [24] |
5 | 2.0–3.8 | 100 | 45 | 100 | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xiang, L.; Lin, Y.; Chen, L.; Guo, R.; Cao, Y.; Huang, X.; Wu, J. Li/Na Ion Storage Performance of a FeOF Nano Rod with Controllable Morphology. Processes 2022, 10, 1491. https://doi.org/10.3390/pr10081491
Li L, Xiang L, Lin Y, Chen L, Guo R, Cao Y, Huang X, Wu J. Li/Na Ion Storage Performance of a FeOF Nano Rod with Controllable Morphology. Processes. 2022; 10(8):1491. https://doi.org/10.3390/pr10081491
Chicago/Turabian StyleLi, Linhua, Liangshun Xiang, Yan Lin, Lei Chen, Renqing Guo, Yiqi Cao, Xiaohua Huang, and Jianbo Wu. 2022. "Li/Na Ion Storage Performance of a FeOF Nano Rod with Controllable Morphology" Processes 10, no. 8: 1491. https://doi.org/10.3390/pr10081491
APA StyleLi, L., Xiang, L., Lin, Y., Chen, L., Guo, R., Cao, Y., Huang, X., & Wu, J. (2022). Li/Na Ion Storage Performance of a FeOF Nano Rod with Controllable Morphology. Processes, 10(8), 1491. https://doi.org/10.3390/pr10081491