Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Denitration Solution
2.2. MFCs Set-Up and Inoculation
2.3. MFCs Operation
2.4. Analytical Methods
3. Results and Discussion
3.1. Influence of COD Concentration on Treatment of Saline Denitration Solution
3.1.1. Influence of COD Concentration on Removal of Nitrate Nitrogen
3.1.2. Influence of COD Concentration on Electricity Generation
3.2. Influence of Initial Nitrate Nitrogen Concentration on Treatment of Saline Denitration Solution
3.2.1. Influence of Treatment Process on Removal of Nitrate Nitrogen
3.2.2. Influence of Initial Nitrate Nitrogen Concentration on Electricity Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Galloway, J.N. Acidification of the world: Natural and Anthropogenic. Water Air Soil Pollut. 2001, 130, 17–24. [Google Scholar] [CrossRef]
- Niu, H.Y.; Leung, D.Y.C. A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environ. Rev. 2010, 18, 175–189. [Google Scholar] [CrossRef]
- Barman, S.; Philip, L. Integrated system for the treatment of oxides of nitrogen from flue gases. Environ. Sci. Technol. 2006, 40, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Q. Control measures of atmospheric nitrogen oxides pollution in China. Environ. Prot. 2009, 426, 9–11. [Google Scholar]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- Wang, S.W.; Zhang, Q.; Streets, D.G.; He, K.B.; Martin, R.V.; Lamsal, L.N.; Chen, D.; Lei, Y.; Lu, Z. Growth in NOX emissions from power plants in China: Bottom-up estimates and satellite observations. Atmos. Chem. Phys. 2012, 12, 4429–4447. [Google Scholar] [CrossRef]
- Zheng, L.G.; Zhou, H.; Cen, K.F.; Wang, C.L. A comparative study of optimization algorithms for low NOX combustion modification at a coal-fired utility boiler. Expert Syst. Appl. 2009, 36, 2780–2793. [Google Scholar] [CrossRef]
- Spliethoff, H.; Greul, U.; Rüdiger, H.; Hein, K.R.G. Basic effects on NOX emissions in air staging and reburning at a bench-scale test facility. Fuel 1996, 75, 560–564. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, X.T.; Zhou, M.X.; Ma, W.W.; Dahri, M.W.; Cen, K.F. Optimization of ammonia injection gridin hybrid selective non-catalyst reduction and selective catalyst reduction system to achieve ultra-low NOx emissions. J. Energy Inst. 2018, 91, 984–996. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Ma, X.Q.; Lin, H.; Tang, Y.T. The energy consumption and environmental impacts of SCR technology in China. Appl. Energ. 2011, 88, 1120–1129. [Google Scholar] [CrossRef]
- Van Caneghem, J.; De Greef, J.; Block, C.; Vandecasteele, C. NOx reduction in waste incinerators by selective catalytic reduction(SCR) instead of selective noncatalytic reduction(SNCR) compared from a life cycle perspective: A case study. J. Clean. Prod. 2016, 112, 4452–4460. [Google Scholar] [CrossRef]
- Mok, Y.S.; Ham, S.W. Conversion of NO to NO2 in air by a pulsed corona discharge process. Chem. Eng. Sci. 1998, 53, 1667–1678. [Google Scholar] [CrossRef]
- Chang, J.S.; Urashima, K.; Tong, Y.X.; Liu, W.P.; Wei, H.Y.; Yang, F.M.; Liu, X.J. Simultaneous removal of NOX and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: Pilot plant tests. J. Electrost. 2003, 57, 313–323. [Google Scholar] [CrossRef]
- Lin, H.; Gao, X.; Luo, Z.; Cen, K.F.; Huang, Z. Removal of NOX with radical injection caused by corona discharge. Fuel 2004, 83, 1349–1355. [Google Scholar] [CrossRef]
- Tsuji, K.; Shiraishi, I. Combined desulfurization/denitrification and reduction of air toxics using activated coke. Fuel 1997, 76, 549–559. [Google Scholar] [CrossRef]
- Mochida, I.; Yozo, K. Removal of SO2 and NOX over activated carbon fibers. Carbon 2000, 38, 227–239. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z.; Cen, K. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J. Hazard. Mater. 2010, 174, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, N.D. Retrofit control technology reducing NOX emissions. Power Eng. 1994, 98, 23–27. [Google Scholar]
- Forzatti, P. Present status and perspectives in de-NOX SCR catalysis. Appl. Catal. A Gen. 2001, 222, 221–236. [Google Scholar] [CrossRef]
- Jirat, J.; Stepanek, F.; Marek, M.; KubíEk, M. Comparison of design and operation strategies for temperature control during selective catalytic reduction of NOX. Chem. Eng. Technol. 2001, 24, 35–40. [Google Scholar] [CrossRef]
- Maisuls, S.E.; Seshan, K.; Feast, S.; Lercher, J.A. Selective catalytic reduction of NOX to nitrogen over Co-Pt/ZSM-5 Part A. Characterization and kinetic studies. Appl. Catal. B Environ. 2001, 29, 69–81. [Google Scholar] [CrossRef]
- Ergas, S.J.; Kinney, K.; Fuller, M.E.; Scow, K.M. Characterization of compost biofiltration system degrading dichloromethane. Biotechnol. Bioeng. 1994, 44, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Kennes, C.; Thalasso, F. Waste gas biotreatment technology. J. Chem. Technol. Biotechnol. 1998, 72, 303–319. [Google Scholar] [CrossRef]
- Jin, Y.; Guo, L.; Veiga, M.C.; Kennes, C. Optimization of the treatment of carbon monoxide-polluted air in biofilters. Chemosphere 2009, 74, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.F.; Hsing, H.J.; Yang, Y.C.; Shyng, J.Y. The effects of selected parameters on the nitric oxide removal by biofilter. J. Hazard. Mater. 2007, 148, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.S.; Mao, Y.P.; Yang, X.J.; Chen, Y.; Long, X.L.; Yuan, W.K. Simultaneous absorption of NO and SO2 into Fe(II)–EDTA solution coupled with the Fe(II)–EDTA regeneration catalyzed by activated carbon. Sep. Purif. Technol. 2010, 74, 1–6. [Google Scholar] [CrossRef]
- Chen, L.; Chung-Hao, H.; Yang, C. Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions. Environ. Prog. Sustain. Energy 2010, 24, 279–288. [Google Scholar] [CrossRef]
- Hutson, N.D.; Krzyzynska, R.; Srivastava, R.K. Simultaneous removal of SO2, NOX, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Ind. Eng. Chem. Res. 2008, 47, 5825–5831. [Google Scholar] [CrossRef]
- Guo, R.T.; Gao, X.; Pan, W.G.; Ren, J.X.; Wu, J.; Zhang, X.B. Absorption of NO into NaClO3/NaOH solutions in a stirred tank reactor. Fuel 2010, 89, 3431–3435. [Google Scholar] [CrossRef]
- Chu, H.; Chien, T.W.; Li, S.Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. Sci. Total Environ. 2001, 275, 127–135. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhou, J.H.; Zhu, Y.Q.; Wen, Z.; Liu, J.; Cen, K. Simultaneous removal of NOX, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technol. 2007, 88, 817–823. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhou, J.H.; Fan, J.R.; Cen, K. Direct numerical simulation of ozone injection technology for NOX control in flue gas. Energy & Fuels 2006, 20, 2432–2438. [Google Scholar]
- Yoon, H.J.; Park, H.W.; Park, D.W. Simultaneous oxidation and absorption of NOx and SO2 in an integrated O3 oxidation/wet atomizing system. Energy Fuels 2016, 30, 3289–3297. [Google Scholar] [CrossRef]
- Õgi, I.J.; Erme, K.; Raud, J.; Laan, M. Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel 2016, 173, 45–51. [Google Scholar]
- Lin, F.W.; Wang, Z.H.; Zhang, Z.M.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chem. Eng. J. 2020, 382, 123030. [Google Scholar] [CrossRef]
- Ono, Y.; Somiya, I.; Oda, Y. Identification of a carcinogenic heterocyclic amine in river water. Water Res. 2000, 34, 890–894. [Google Scholar] [CrossRef]
- Jang, D.; Hwang, Y.; Shin, H.; Lee, W. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresour. Technol. 2013, 141, 50–56. [Google Scholar] [CrossRef]
- Church, J.; Hwang, J.H.; Kim, K.T.; Mclean, R.; Oh, Y.K.; Nam, B.; Joo, J.C.; Lee, W.H. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour. Technol. 2017, 243, 147–153. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, C.; Wang, Q.; Yang, Y.; Zhang, Z.; Sugiura, N. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J. Hazard. Mater. 2011, 192, 1033–1039. [Google Scholar] [CrossRef]
- Tong, Y.; He, Z. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system. J. Hazard. Mater. 2013, 262, 614–619. [Google Scholar] [CrossRef]
- Bilanovic, D.; Battistoni, P.; Cecchi, F.; Pavan, P.; Mata-Alvarez, J. Denitrification under high nitrate concentration and alternating anoxic conditions. Water Res. 1999, 33, 3311–3320. [Google Scholar] [CrossRef]
- Fernándeznava, Y.; Marañón, E.; Soons, J.; Castrillón, L. Denitrification of high nitrate concentration wastewater using alternative carbon sources. J. Hazard. Mater. 2010, 173, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Dincer, A.R.; Kargi, F. Salt Inhibition of Nitrification and Denitrification in Saline Wastewater. Environ. Technol. Lett. 1999, 20, 1147–1153. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Lovley, D.R. Bug juice: Harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4, 497–508. [Google Scholar] [CrossRef]
- Li, C.; Ren, H.Q.; Xu, M.; Cao, J. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis. Bioresour. Technol. 2015, 175, 545–552. [Google Scholar] [CrossRef]
- Yuan, S.J.; Sheng, G.P.; Li, W.; Lin, Z.Q.; Zeng, R.J.; Tong, Z.H.; Yu, H.Q. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ. Sci. Technol. 2010, 44, 5575–5580. [Google Scholar] [CrossRef]
- Tao, Q.; Luo, J.; Zhou, J.; Zhou, S.; Liu, G.; Zhang, R. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresour. Technol. 2014, 164, 402–407. [Google Scholar] [CrossRef]
- Allen, R.M.; Bennetto, H.P. Microbial fuel-cells. Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 1993, 39, 27–40. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Wang, Z.; Lu, Y.; Li, X.; Ren, Y. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater. Water Res. 2017, 110, 74–82. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, P.; Zhang, M.; Chen, H.; Chen, T.; Xie, Z.; Cai, J. Kinetics of substrate removal and electricity generation in anodic denitrification microbial fuel cell (AD-MFC). Bioresour. Technol. 2013, 149, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cheng, S.; Yang, J.; Li, C.; Sun, Y.; Cen, K. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells. Chem. Eng. J. 2018, 337, 661–670. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, J. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 2013, 92, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, R.S.; Egas, D.; Spendelow, J.S.; Natarajan, D.; Markoski, L.J.; Kenis, P.J. Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem. Solid-State Lett. 2015, 9, 146–150. [Google Scholar] [CrossRef]
- Gilcreas, F.W. Standard methods for the examination of water and waste water. Am. J. Public Health Nations Health 1966, 56, 387–388. [Google Scholar] [CrossRef]
- McCarthy, P.L.; Beck, L.; Amant, P. Biological denitrification of wastewaters by addition of organic materials. In Proceedings of the 24th Industrial Waste Conference; Purdue University: West Lafayette, IN, USA, 1969; pp. 1271–1285. [Google Scholar]
- Her, J.; Huang, J.S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 1995, 54, 45–51. [Google Scholar] [CrossRef]
- Zhou, Y.; Oehmen, A.; Lim, M.; Vadivelu, V.; Ng, W.J. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 2011, 45, 4672–4682. [Google Scholar] [CrossRef]
- Raghavulu, S.V.; Mohan, S.V.; Goud, R.K.; Sarma, P. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem. Commun. 2009, 11, 371–375. [Google Scholar] [CrossRef]
- Jiang, D.; Curtis, M.; Troop, E.; Scheible, K.; Mcgrath, J.; Hu, B.; Suib, S.; Raymond, D.; Li, B. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int. J. Hydrogen Energy 2011, 36, 876–884. [Google Scholar] [CrossRef]
- Fernándeznava, Y.; Marañón, E.; Soons, J.; Castrillón, L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 2008, 99, 7976–7981. [Google Scholar] [CrossRef]
- Henze, M. Capabilities of biological nitrogen removal process from wastewater. Water Sci. Technol. 1991, 23, 669–679. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, H.; Liu, H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 2007, 41, 8154–8158. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Huang, Z.; Wang, Z. Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC. Processes 2022, 10, 1540. https://doi.org/10.3390/pr10081540
Cheng S, Huang Z, Wang Z. Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC. Processes. 2022; 10(8):1540. https://doi.org/10.3390/pr10081540
Chicago/Turabian StyleCheng, Shaoan, Zhipeng Huang, and Zhihua Wang. 2022. "Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC" Processes 10, no. 8: 1540. https://doi.org/10.3390/pr10081540
APA StyleCheng, S., Huang, Z., & Wang, Z. (2022). Nitrogen Removal from the High Nitrate Content Saline Denitration Solution of a Coal-Fired Power Plant by MFC. Processes, 10(8), 1540. https://doi.org/10.3390/pr10081540