Ideal Flow Design of Plane-Strain Bending Driven by Springback
Abstract
:1. Introduction
2. Statement of the Problem
3. Solution at Loading
3.1. Kinematics
3.2. Stress Solution
3.2.1. Case
3.2.2. Case
4. Design Procedure at Loading
5. Unloading and Final Design
6. Numerical Example
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagoner, R.H.; Lim, H.; Lee, M.-G. Advanced issues in springback. Int. J. Plast. 2013, 45, 3–20. [Google Scholar] [CrossRef]
- Cao, F.; Zeng, Y.; Liu, B.; Wu, W. A novel method for reducing springback of hot stretch bending parts. ICAACE 2019 IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1213, 052035. [Google Scholar] [CrossRef]
- Badrish, A.; Morchhale, A.; Kotkunde, N.; Singh, S.K. Parameter optimization in the thermo-mechanical V-bending process to minimize springback of inconel 625 alloy. Arab. J. Sci. Eng. 2020, 45, 5295–5309. [Google Scholar] [CrossRef]
- Wei, B.; Weib, Y.; Zhang, F.; He, K.; Dang, X.; Du, R. Influence of different heating methods on springback of mild steel plate during dieless bending process. Proc. Manuf. 2020, 50, 318–323. [Google Scholar] [CrossRef]
- Wei, B.; Wei, Y.; Zhang, F.; He, K.; Dang, X.; Du, R. Springback control and plastic deformation of metal plates with large curvature in heat-assisted incremental bending process. Int. J. Adv. Manuf. Technol. 2021, 112, 1483–1500. [Google Scholar] [CrossRef]
- Wasif, M.; Fatima, A.; Ahmed, A.; Iqbal, S.A. Investigation and optimization of parameters for the reduced springback in JSC-590 sheet metals occurred during the V-bending process. Trans. Indian. Inst. Met. 2021, 74, 2751–2760. [Google Scholar] [CrossRef]
- Chung, K.; Alexandrov, S. Ideal flow in plasticity. Appl. Mech. Rev. 2007, 60, 316–335. [Google Scholar] [CrossRef]
- Richmond, O.; Devenpeck, M.L. A die profile for maximum efficiency in strip drawing. Proc. 4th U.S. Natl. Congr. Appl. Mech. ASME 1962, 2, 1053–1057. [Google Scholar]
- Richmond, O.; Alexandrov, S. The theory of general and ideal plastic deformations of Tresca solids. Acta Mech. 2002, 158, 33–42. [Google Scholar] [CrossRef]
- Hill, R. A remark on diagonal streaming in plane plastic strain. J. Mech. Phys. Solids 1966, 14, 245–248. [Google Scholar] [CrossRef]
- Richmond, O.; Morrison, H.L. Streamlined wire drawing dies of minimum length. J. Mech. Phys. Solids 1967, 15, 195–203. [Google Scholar] [CrossRef]
- Richmond, O. Theory of streamlined dies for drawing and extrusion. Mech. Solid State 1968, 154–167. [Google Scholar] [CrossRef]
- Alexandrov, S.; Kim, J.-H.; Chung, K.; Kang, T.-J. An alternative approach to analysis of plane-strain pure bending at large strains. J. Strain Anal. Eng. Des. 2006, 41, 397–410. [Google Scholar] [CrossRef]
- Alexandrov, S.; Lyamina, E.; Hwang, Y.-M. Plastic bending at large strain: A review. Processes 2021, 9, 406. [Google Scholar] [CrossRef]
- Lee, Y.; Dawson, P.R. Obtaining residual stresses in metal forming after neglecting elasticity on loading. ASME. J. Appl. Mech. 1989, 56, 318–327. [Google Scholar] [CrossRef]
- Alexandrov, S.; Lyamina, E.; Hwang, Y.-M. Finite pure plane strain bending of inhomogeneous anisotropic sheets. Symmetry 2021, 13, 145. [Google Scholar] [CrossRef]
- Zhai, R.; Zhao, Z.; Yang, J.; Ma, B.; Yu, G. Analytical prediction of stretch-bending springback based on the proportional kinematic hardening model. Symmetry 2021, 13, 2389. [Google Scholar] [CrossRef]
- Alexandrov, S.; Manabe, K.; Furushima, T. A general analytic solution for plane strain bending under tension for strain-hardening material at large strains. Arch. Appl. Mech. 2011, 81, 1935–1952. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Huang, S.; Yan, B.; Li, Y.; Zhao, R. Experimental and numerical prediction and comprehensive compensation of springback in cold roll forming of UHSS. Int. J. Adv. Manuf. Technol. 2020, 111, 657–671. [Google Scholar] [CrossRef]
Design (a) | ||
Design (b) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrov, S.; Rynkovskaya, M.; Hwang, Y.-M. Ideal Flow Design of Plane-Strain Bending Driven by Springback. Processes 2022, 10, 1601. https://doi.org/10.3390/pr10081601
Alexandrov S, Rynkovskaya M, Hwang Y-M. Ideal Flow Design of Plane-Strain Bending Driven by Springback. Processes. 2022; 10(8):1601. https://doi.org/10.3390/pr10081601
Chicago/Turabian StyleAlexandrov, Sergei, Marina Rynkovskaya, and Yeong-Maw Hwang. 2022. "Ideal Flow Design of Plane-Strain Bending Driven by Springback" Processes 10, no. 8: 1601. https://doi.org/10.3390/pr10081601
APA StyleAlexandrov, S., Rynkovskaya, M., & Hwang, Y. -M. (2022). Ideal Flow Design of Plane-Strain Bending Driven by Springback. Processes, 10(8), 1601. https://doi.org/10.3390/pr10081601