Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network
Abstract
:1. Introduction
- A novel enhanced SSA version is implemented from the perspective of applicability and utilized to maximize the WSN coverage rate.
- A swarm intelligence applicable optimization process for the WSN coverage enhancement problem is established.
- The performance of other well-known swarm intelligence algorithms in WSN coverage optimization is further investigated and analyzed.
2. Mathematical Model of Optimization Algorithm
2.1. Overview of the Standard SSA Metaheuristics
2.1.1. Initialization of Sparrow Population
2.1.2. The Producer Update Phase
2.1.3. The Scrounger Update Phase
2.1.4. The Scouter Update Phase
2.2. Motivation for Improvements
2.3. Proposed Novel Enhanced SSA Metaheuristics
- Uniform population initialization based on Latin hypercube sampling;
- The sine and cosine iteration equations for the producer update phase;
- The scrounger update phase with Lévy flight;
- The disruption phase acts on the worse population with poor fitness.
2.3.1. Latin Hypercube Sampling Initialization
- (1)
- The population , dimension , and the boundary of individual sparrows are set.
- (2)
- The of each individual is divided into three sub-intervals that do not overlap each other and have the same probability.
- (3)
- One point is randomly selected from each sub-interval.
- (4)
- The points extracted from each dimension are combined to form an initial population.
2.3.2. Sine and Cosine Iteration Equations
2.3.3. Lévy Flight Strategy
2.3.4. Disruption Phase
2.3.5. Operation Process of NESSA
2.4. Benchmark Function Numerical Tests
2.4.1. Parameter Settings
2.4.2. Analysis of Test Results
3. WSN Coverage Optimization
3.1. Mathematical Modeling
3.2. Optimization Process Based on Swarm Intelligence Algorithms
- (1)
- Relevant parameters of the monitoring area and specific control parameters of the swarm intelligence algorithm are set.
- (2)
- The population is initialized and the initial coverage rate is obtained by calculating the objective function.
- (3)
- The algorithm iterates circularly to update the location of individuals in the search space.
- (4)
- The objective function value is evaluated to find the optimal individual with the best fitness; that is, the current optimal node deployment scheme is obtained.
- (5)
- Whether the maximum number of iterations is reached is determined. If yes, the algorithm is terminated and the optimal coverage rate and corresponding node coordinates are output. Otherwise, step 3 is repeated to continue the program, and one is added to the current iterations.
3.3. Case Studies
3.3.1. Case 1
3.3.2. Case 2
3.3.3. Case 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, C.; Zhang, L.; Ma, X. A Cotton High-Efficiency Water-Fertilizer Control System Using Wireless Sensor Network for Precision Agriculture. Processes 2021, 9, 1693. [Google Scholar] [CrossRef]
- Peter, L.; Kracik, J.; Cerny, M. Mathematical model based on the shape of pulse waves measured at a single spot for the non-invasive prediction of blood pressure. Processes 2020, 8, 442. [Google Scholar] [CrossRef]
- Adame, T.; Bel, A.; Carreras, A. CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Gener. Comput. Syst. 2018, 78, 602–615. [Google Scholar] [CrossRef]
- Gong, C.; Guo, C.; Xu, H. A joint optimization strategy of coverage planning and energy scheduling for wireless rechargeable sensor networks. Processes 2020, 8, 1324. [Google Scholar] [CrossRef]
- Ahmad, S.; Hussain, I.; Fayaz, M. A Distributed Approach towards Improved Dissemination Protocol for Smooth Handover in MediaSense IoT Platform. Processes 2018, 6, 46. [Google Scholar] [CrossRef]
- Brezulianu, A.; Aghion, C.; Hagan, M. Active Control Parameters Monitoring for Freight Trains, Using Wireless Sensor Network Platform and Internet of Things. Processes 2020, 8, 639. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Rajendran, S.; Čep, R.; RC, N.; Pal, S.; Kalita, K. A Conceptual Comparison of Six Nature-Inspired Metaheuristic Algorithms in Process Optimization. Processes 2022, 10, 197. [Google Scholar] [CrossRef]
- Shokouhifar, M. FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing. Appl. Soft Comput. 2021, 107, 107401. [Google Scholar] [CrossRef]
- Liao, W.H.; Kao, Y.; Wu, R.T. Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Syst. Appl. 2011, 38, 6599–6605. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, Y.H. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Trans. Cybern. 2013, 43, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, W.; Qi, J. Wireless sensor network coverage optimization based on whale group algorithm. Comput. Sci. Inf. Syst. 2018, 15, 569–583. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Fan, S. Coverage control of sensor networks in IoT based on RPSO. IEEE Internet Things J. 2018, 5, 3521–3532. [Google Scholar] [CrossRef]
- Miao, Z.; Yuan, X.; Zhou, F. Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem. Appl. Soft Comput. 2020, 96, 106602. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, W. A coverage optimization method for WSNs based on the improved weed algorithm. Sensors 2021, 21, 5869. [Google Scholar] [CrossRef]
- Shokouhifar, M. Swarm intelligence RFID network planning using multi-antenna readers for asset tracking in hospital environments. Comput. Netw. 2021, 198, 108427. [Google Scholar] [CrossRef]
- He, Q.; Lan, Z.; Zhang, D.; Yang, L.; Luo, S. Improved Marine Predator Algorithm for Wireless Sensor Network Coverage Optimization Problem. Sustainability 2022, 14, 9944. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, W.; Wang, H. Fault diagnosis of a wind turbine gearbox based on improved variational mode algorithm and information entropy. Entropy 2021, 23, 794. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Zhou, P. Forecasting Network Interface Flow Using a Broad Learning System Based on the Sparrow Search Algorithm. Entropy 2022, 24, 478. [Google Scholar] [CrossRef]
- Liu, R.; Mo, Y.; Lu, Y. Swarm-Intelligence Optimization Method for Dynamic Optimization Problem. Mathematics 2022, 10, 1803. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, T.G.; Dao, T.K. Microgrid Operations Planning Based on Improving the Flying Sparrow Search Algorithm. Symmetry 2022, 14, 168. [Google Scholar] [CrossRef]
- Ma, J.; Hao, Z.; Sun, W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Process. Manag. 2022, 59, 102854. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; He, S. A Fractional-Order Chaotic Sparrow Search Algorithm for Enhancement of Long Distance Iris Image. Mathematics 2021, 9, 2790. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl. Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
- Bacanin, N.; Stoean, R.; Zivkovic, M. Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: Application for dropout regularization. Mathematics 2021, 9, 2705. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Donovan, D.; Burrage, K.; Burrage, P. Estimates of the coverage of parameter space by Latin Hypercube and Orthogonal Array-based sampling. Appl. Math. Model. 2018, 57, 553–564. [Google Scholar] [CrossRef]
- Chen, X.; Li, K.; Xu, B. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem. Knowl. Based Syst. 2020, 208, 106463. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural. Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Sarafrazi, S.; Nezamabadi-pour, H.; Saryazdi, S. Disruption: A new operator in gravitational search algorithm. Sci. Iran. 2011, 18, 539–548. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Hussain, K.; Mohd, M.N.; Cheng, S. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2191–2233. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, C. Sparrow search algorithm based on Sobol sequence and crisscross strategy. J. Comput. Appl. 2022, 42, 36. [Google Scholar]
- Zhang, X.; Zhang, Y.; Liu, L. Improved sparrow search algorithm fused with multiple strategies. Appl. Res. Comput. 2022, 39, 1086–1091. [Google Scholar]
- Mao, Q.; Zhang, Q. Improved sparrow algorithm combining Cauchy mutation and Opposition-based learning. J. Front. Comput. Sci. Technol. 2021, 15, 1155. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools. Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, G.; Lu, F.L. A molecular force field-based optimal deployment algorithm for UAV swarm coverage maximization in mobile wireless sensor network. Processes 2020, 8, 369. [Google Scholar] [CrossRef] [Green Version]
- Lian, F.L.; Moyne, J.; Tilbury, D. Network design consideration for distributed control systems. IEEE Trans. Control Syst. Technol. 2002, 10, 297–307. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Ma, J.J. An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors 2007, 7, 354–370. [Google Scholar] [CrossRef] [Green Version]
Benchmark | Equation | d | Range | Fmin |
---|---|---|---|---|
Bent Cigar Function | 100 | [−100, 100] | 0 | |
Sum of Different Powers Function | 100 | [−100, 100] | 0 | |
Rotated Hyper–Ellipsoid Function | 100 | [−65, 65] | 0 | |
Zakharov Function | 100 | [−5, 10] | 0 | |
Sum Squares Function | 100 | [−10, 10] | 0 | |
Quartic Function | 100 | [−1.28, 1.28] | 0 | |
Sphere Model | 100 | [−100, 100] | 0 | |
Schwefel’s problem 2.22 | 100 | [−10, 10] | 0 | |
Schwefel’s problem 1.2 | 100 | [−100, 100] | 0 | |
Schwefel’s problem 2.21 | 100 | [−100, 100] | 0 | |
Rastrigin’s Function | 100 | [−5.12, 5.12] | 0 | |
Ackley’s Function | 100 | [−32, 32] | 0 | |
Kowalik’s Function | 4 | [−5, 5] | 0.000307 |
Benchmark | Result | PSO | WOA | GWO | SCA | SSA | NESSA |
---|---|---|---|---|---|---|---|
Mean | 1.8905 × 1010 | 4.6133 × 10−64 | 1.3138 × 10−6 | 1.0975 × 1010 | 5.8424 × 10−45 | 0 | |
Std. | 5.0627 × 109 | 2.5180 × 10−63 | 1.2085 × 10−6 | 8.4216 × 109 | 4.1233 × 10−44 | 0 | |
Time | 0.1162 | 0.1712 | 0.3835 | 0.3062 | 0.9161 | 0.7782 | |
Mean | 8.9275 × 105 | 1.3847 × 10−67 | 4.9847 × 10−11 | 4.9191 × 105 | 6.0385 × 10−41 | 0 | |
Std. | 2.6495 × 105 | 9.3225 × 10−67 | 4.5438 × 10−11 | 3.6447 × 105 | 4.2699 × 10−40 | 0 | |
Time | 0.0927 | 0.1735 | 0.3772 | 0.2986 | 0.9762 | 0.7717 | |
Mean | 3.7963 × 105 | 6.6164 × 10−71 | 2.5773 × 10−11 | 1.4308 × 105 | 5.9923 × 10−46 | 0 | |
Std. | 9.1736 × 104 | 2.4545 × 10−71 | 1.7921 × 10−11 | 9.7908 × 104 | 4.2372 × 10−45 | 0 | |
Time | 0.2379 | 0.2991 | 0.5325 | 0.4151 | 1.1570 | 1.0807 | |
Mean | 6.5223 × 109 | 1.7066 × 103 | 1.1456 × 102 | 6.7071 × 102 | 9.3710 × 10−44 | 0 | |
Std. | 4.2494 × 1010 | 2.9734 × 102 | 5.3017 × 101 | 1.3924 × 102 | 6.6262 × 10−43 | 0 | |
Time | 0.1069 | 0.1659 | 0.3756 | 0.3171 | 0.8996 | 0.7399 | |
Mean | 9.0534 × 103 | 4.3646 × 10−71 | 6.5252 × 10−13 | 3.5847 × 103 | 5.1037 × 10−34 | 0 | |
Std. | 2.4400 × 103 | 3.0630 × 10−70 | 5.7752 × 10−13 | 23976 × 103 | 3.6089 × 10−33 | 0 | |
Time | 0.0992 | 0.1761 | 0.3991 | 0.2775 | 0.9566 | 0.8670 | |
Mean | 1.3882 × 101 | 2.9906 × 10−3 | 7.2474 × 10−3 | 1.4196 × 102 | 2.9581 × 10−4 | 7.2163 × 10−5 | |
Std. | 6.2807 | 4.1427 × 10−3 | 2.3951 × 10−3 | 5.7890 × 101 | 2.2796 × 10−4 | 7.7187 × 10−5 | |
Time | 0.3111 | 0.3877 | 0.5716 | 0.5165 | 1.1721 | 0.8637 | |
Mean | 1.9774 × 104 | 1.9564 × 10−71 | 1.6134 × 10−12 | 1.2025 × 104 | 3.0173 × 10−49 | 0 | |
Std. | 4.6507 × 103 | 1.1392 × 10−70 | 1.3372 × 10−12 | 7.9423 × 103 | 1.5383 × 10−48 | 0 | |
Time | 0.0850 | 0.1792 | 0.3643 | 0.2922 | 0.9325 | 0.6870 | |
Mean | 1.3447 × 102 | 5.9195 × 10−49 | 4.2666 × 10−8 | 9.0974 | 9.1117 × 10−29 | 0 | |
Std. | 2.7261 × 101 | 3.1623 × 10−48 | 1.6837 × 10−8 | 7.4861 | 5.7121 × 10−28 | 0 | |
Time | 0.0921 | 0.1825 | 0.4209 | 0.2790 | 0.9327 | 0.7957 | |
Mean | 1.2283 × 105 | 1.0690 × 106 | 6.5699 × 102 | 2.3771 × 105 | 8.2407 × 10−43 | 0 | |
Std. | 6.4941 × 104 | 2.3307 × 105 | 8.9532 × 102 | 6.0667 × 104 | 5.6712 × 10−42 | 0 | |
Time | 0.6435 | 0.7011 | 0.8707 | 0.8089 | 1.3878 | 1.1600 | |
Mean | 3.2619 × 101 | 7.8270 × 101 | 8.8309 × 10−1 | 8.9710 × 102 | 1.7378 × 10−29 | 0 | |
Std. | 3.7684 | 2.3100 × 101 | 8.1956 × 10−1 | 2.7997 | 1.0589 × 10−28 | 0 | |
Time | 0.1178 | 0.1680 | 0.3698 | 0.2757 | 0.8630 | 0.7585 | |
Mean | 7.5226 × 102 | 0 | 1.0379 × 101 | 2.6752 × 102 | 0 | 0 | |
Std. | 4.5534 × 101 | 0 | 8.4162 | 1.3756 × 102 | 0 | 0 | |
Time | 0.1505 | 0.1919 | 0.3981 | 0.3133 | 0.9070 | 0.6757 | |
Mean | 1.3862 × 101 | 4.2988 × 10−15 | 1.2197 × 10−7 | 1.8467 × 102 | 8.8818 × 10−16 | 8.8818 × 10−16 | |
Std. | 8.0286 × 10−1 | 2.3762 × 10−15 | 4.1440 × 10−8 | 4.6796 | 0 | 0 | |
Time | 0.1359 | 0.1838 | 0.3957 | 0.3415 | 0.9276 | 0.7167 | |
Mean | 8.5555 × 10−3 | 5.9264 × 10−4 | 5.4827 × 10−3 | 1.0546 × 10−3 | 2.3203 × 10−3 | 3.2338 × 10−4 | |
Std. | 1.3163 × 10−2 | 3.1154 × 10−4 | 1.2621 × 10−2 | 3.8164 × 10−4 | 6.0756 × 10−3 | 1.1952 × 10−5 | |
Time | 0.0652 | 0.0783 | 0.0711 | 0.0727 | 0.1702 | 0.2031 |
Benchmark | NESSA vs. PSO | NESSA vs. WOA | NESSA vs. GWO | NESSA vs. SCA | NESSA vs. SSA |
---|---|---|---|---|---|
F1 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 4.6715 × 10−19 |
F2 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 1.6907 × 10−18 |
F3 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 4.6715 × 10−19 |
F4 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 1.6907 × 10−18 |
F5 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 |
F6 | 7.0661 × 10−18 | 1.1738 × 10−15 | 7.0661 × 10−18 | 7.0661 × 10−18 | 3.5360 × 10−9 |
F7 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 1.6907 × 10−18 |
F8 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 1.2593 × 10−19 |
F9 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 4.6715 × 10−19 |
F10 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 1.2593 × 10−19 |
F11 | 3.3111 × 10−20 | N/A | 3.3111 × 10−20 | 3.3111 × 10−20 | N/A |
F12 | 3.3111 × 10−20 | 1.1011 × 10−14 | 3.3111 × 10−20 | 3.3111 × 10−20 | N/A |
F13 | 1.5991 × 10−4 | 9.0593 × 10−10 | 1.4307 × 10−3 | 1.1417 × 10−17 | 8.7729 × 10−9 |
Benchmark | Algorithm | Mean | Std. | Time | p-Value |
---|---|---|---|---|---|
SSA | 6.1212 × 10−41 | 4.1750 × 10−40 | 9.3090 | 1.6907 × 10−18 | |
SSASC | 0 | 0 | 12.9206 | N/A | |
ISSA1 | 4.6707 × 10−80 | 1.7467 × 10−79 | 9.2791 | 7.3684 × 10−16 | |
ISSA2 | 8.3657 × 10−176 | 3.0297 × 10−175 | 9.2900 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 7.5399 | ||
SSA | 3.1521 × 10−42 | 2.9376 × 10−41 | 9.2487 | 4.6715 × 10−19 | |
SSASC | 0 | 0 | 11.7667 | N/A | |
ISSA1 | 1.1675 × 10−122 | 7.7152 × 10−121 | 9.5825 | 1.4596 × 10−12 | |
ISSA2 | 6.7188 × 10−198 | 3.8761 × 10−197 | 9.5071 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 7.2796 | ||
SSA | 2.0271 × 10−43 | 1.4299 × 10−42 | 16.5706 | 1.2593 × 10−19 | |
SSASC | 0 | 0 | 23.7165 | N/A | |
ISSA1 | 5.3247 × 10−76 | 3.7646 × 10−75 | 12.3822 | 5.2454 × 10−13 | |
ISSA2 | 2.8774 × 10−181 | 2.0346 × 10−180 | 13.2727 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 14.8767 | ||
SSA | 1.5016 × 10−41 | 9.7589 × 10−41 | 9.3427 | 4.6715 × 10−19 | |
SSASC | 0 | 0 | 12.7269 | N/A | |
ISSA1 | 1.9506 × 10−88 | 1.3375 × 10−87 | 9.3298 | 1.4596 × 10−12 | |
ISSA2 | 4.5823 × 10−182 | 3.2275 × 10−181 | 9.5706 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 6.9401 | ||
SSA | 1.8602 × 10−32 | 1.3011 × 10−31 | 9.8776 | 3.3111 × 10−20 | |
SSASC | 0 | 0 | 14.4102 | N/A | |
ISSA1 | 5.3900 × 10−63 | 3.8108 × 10−63 | 9.1247 | 1.4596 × 10−12 | |
ISSA2 | 1.5771 × 10−107 | 1.0312 × 10−107 | 9.4143 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 7.7876 | ||
SSA | 1.0350 × 10−3 | 6.8883 × 10−4 | 11.0312 | 1.7355 × 10−15 | |
SSASC | 1.5502 × 10−4 | 1.3788 × 10−4 | 15.2722 | 8.5865 × 10−4 | |
ISSA1 | 3.6258 × 10−4 | 2.5674 × 10−4 | 10.9255 | 9.4565 × 10−12 | |
ISSA2 | 2.4691 × 10−4 | 3.0829 × 10−4 | 11.1934 | 2.8105 × 10−12 | |
NESSA | 7.7617 × 10−5 | 6.6362 × 10−5 | 7.5121 | ||
SSA | 1.3791 × 10−46 | 9.6292 × 10−46 | 9.0189 | 1.2593 × 10−19 | |
SSASC | 0 | 0 | 12.5317 | N/A | |
ISSA1 | 1.3618 × 10−70 | 1.7302 × 10−71 | 9.2598 | 1.4596 × 10−12 | |
ISSA2 | 3.2087 × 10−163 | 2.2657 × 10−162 | 9.4015 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 7.2973 | ||
SSA | 4.3985 × 10−25 | 2.6406 × 10−24 | 9.2677 | 3.3111 × 10−20 | |
SSASC | 0 | 0 | 13.7007 | N/A | |
ISSA1 | 8.5571 × 10−38 | 4.5731 × 10−37 | 8.8911 | 7.3687 × 10−16 | |
ISSA2 | 2.0627 × 10−97 | 1.4497 × 10−96 | 9.0786 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 7.0836 | ||
SSA | 5.9257 × 10−37 | 4.1898 × 10−36 | 14.3982 | 4.6715 × 10−19 | |
SSASC | 0 | 0 | 23.2557 | N/A | |
ISSA1 | 1.2759 × 10−56 | 9.0185 × 10−55 | 14.3770 | 1.4596 × 10−12 | |
ISSA2 | 8.7874 × 10−186 | 6.1896 × 10−185 | 15.3228 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 12.7107 | ||
SSA | 2.7796 × 10−21 | 1.4596 × 10−20 | 9.1717 | 3.3111 × 10−20 | |
SSASC | 0 | 0 | 13.9827 | N/A | |
ISSA1 | 1.2358 × 10−61 | 6.1296 × 10−60 | 9.0212 | 2.0607 × 10−17 | |
ISSA2 | 5.7257 × 10−92 | 4.0786 × 10−91 | 9.1532 | 3.3111 × 10−20 | |
NESSA | 0 | 0 | 6.5867 | ||
SSA | 0 | 0 | 9.1857 | N/A | |
SSASC | 0 | 0 | 15.5796 | N/A | |
ISSA1 | 0 | 0 | 9.3172 | N/A | |
ISSA2 | 0 | 0 | 9.3216 | N/A | |
NESSA | 0 | 0 | 6.6278 | ||
SSA | 8.8818 × 10−16 | 0 | 9.2862 | N/A | |
SSASC | 8.8818 × 10−16 | 0 | 11.7655 | N/A | |
ISSA1 | 8.8818 × 10−16 | 0 | 9.1125 | N/A | |
ISSA2 | 8.8818 × 10−16 | 0 | 9.3269 | N/A | |
NESSA | 8.8818 × 10−16 | 0 | 6.7362 |
Algorithm | Coverage Rate | p-Value vs. NESSA | Average Time | |||
---|---|---|---|---|---|---|
Optimal | Worst | Mean | Std. | |||
PSO | 0.9771 | 0.9344 | 0.9585 | 1.2067 × 10−2 | 1.1960 × 10−12 | 11.2371 |
WOA | 0.9812 | 0.9094 | 0.9521 | 1.6991 × 10−2 | 1.2019 × 10−12 | 11.5263 |
GWO | 1.0000 | 0.9906 | 0.9983 | 2.0740 × 10−3 | 1.2045 × 10−7 | 14.1711 |
SCA | 0.9282 | 0.8607 | 0.8937 | 1.6331 × 10−2 | 1.2049 × 10−12 | 12.7758 |
SSA | 0.9563 | 0.8821 | 0.9190 | 2.2586 × 10−2 | 1.2039 × 10−12 | 15.1322 |
SSASC | 0.9625 | 0.8533 | 0.9116 | 2.8690 × 10−2 | 1.2049 × 10−12 | 40.0176 |
ISSA1 | 0.9823 | 0.8595 | 0.9433 | 2.7137 × 10−2 | 1.1921 × 10−12 | 14.2296 |
ISSA2 | 0.9761 | 0.8824 | 0.9205 | 2.2727 × 10−2 | 1.2198 × 10−12 | 14.8573 |
NESSA | 1.0000 | 1.0000 | 1.0000 | 0 | 14.7867 |
Algorithm | Coverage Rate | p-Value vs. NESSA | Average Time | |||
---|---|---|---|---|---|---|
Optimal | Worst | Mean | Std. | |||
PSO | 0.8707 | 0.7619 | 0.8057 | 2.1728 × 10−2 | 2.8809 × 10−11 | 7.1351 |
WOA | 0.8367 | 0.7607 | 0.7973 | 2.1916 × 10−2 | 2.9045 × 10−11 | 7.4728 |
GWO | 0.9387 | 0.7437 | 0.9057 | 3.8881 × 10−2 | 8.7576 × 10−9 | 7.5063 |
SCA | 0.7709 | 0.7233 | 0.7421 | 9.9217× 10−3 | 2.8287 × 10−11 | 6.7501 |
SSA | 0.7981 | 0.7188 | 0.7572 | 1.8913 × 10−2 | 2.8827 × 10−11 | 8.8687 |
SSASC | 0.8752 | 0.7528 | 0.8215 | 2.9191 × 10−2 | 2.8682 × 10−11 | 21.6326 |
ISSA1 | 0.8357 | 0.7486 | 0.7878 | 2.1933 × 10−2 | 2.8871 × 10−11 | 8.6371 |
ISSA2 | 0.8299 | 0.7211 | 0.7680 | 2.2973 × 10−2 | 2.8682 × 10−11 | 9.1599 |
NESSA | 0.9523 | 0.9161 | 0.9371 | 9.6561 × 10−3 | 7.7711 |
Algorithm | Coverage Rate | p-Value vs. NESSA | Average Time | |||
---|---|---|---|---|---|---|
Optimal | Worst | Mean | Std. | |||
PSO | 0.9378 | 0.8958 | 0.9171 | 1.2070 × 10−2 | 2.9972 × 10−11 | 195.7561 |
WOA | 0.9507 | 0.8888 | 0.9264 | 1.4455 × 10−2 | 2.9953 × 10−11 | 201.8856 |
GWO | 0.9925 | 0.9687 | 0.9818 | 5.7332 × 10−3 | 1.8486 × 10−10 | 207.3233 |
SCA | 0.8756 | 0.7897 | 0.8337 | 1.5766 × 10−2 | 2.9953 × 10−11 | 197.1167 |
SSA | 0.8862 | 0.8271 | 0.8636 | 1.2899 × 10−2 | 2.9935 × 10−11 | 208.3121 |
SSASC | 0.9411 | 0.7082 | 0.8532 | 6.1694 × 10−2 | 3.0161 × 10−11 | 702.6788 |
ISSA1 | 0.9447 | 0.8913 | 0.9156 | 1.3141 × 10−2 | 2.9972 × 10−11 | 216.7396 |
ISSA2 | 0.9207 | 0.8522 | 0.8770 | 1.3337 × 10−2 | 3.0161 × 10−11 | 219.6671 |
NESSA | 0.9957 | 0.9885 | 0.9927 | 1.8950 × 10−3 | 202.7887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Mo, Y. Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network. Processes 2022, 10, 1691. https://doi.org/10.3390/pr10091691
Liu R, Mo Y. Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network. Processes. 2022; 10(9):1691. https://doi.org/10.3390/pr10091691
Chicago/Turabian StyleLiu, Rui, and Yuanbin Mo. 2022. "Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network" Processes 10, no. 9: 1691. https://doi.org/10.3390/pr10091691
APA StyleLiu, R., & Mo, Y. (2022). Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network. Processes, 10(9), 1691. https://doi.org/10.3390/pr10091691