Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation
Abstract
:1. Introduction
2. Material and Methods
2.1. Modeling Tools and Mathematical Description of the System
2.2. Experimental Description
3. Results and Discussions
3.1. Monte Carlo Ray-Tracing Simulation
- Reflection: When radiation is reflected by a smooth surface, it obeys the reflection law, according to which the incident and reflected rays form identical angles with respect to the normal to the surface (Figure 5). An important part of the design and analysis steps of solar concentrators concerns ray tracing, which deals with the study of the paths followed by solar rays in systems with reflective and refractive surfaces. For the study of reflected or refracted radiation, it is necessary to follow the procedure shown below.
- Absorption: A significant fraction of the incident radiation is absorbed by the mirrors in a newly installed dish as well as in a parabola whose performance has degraded over time. This means the efficiency tends to decrease;
- Surface roughness: In a real parabolic mirror characterized by a non-perfectly smooth surface, there is always a deviation of the reflected rays different from the ideal case that refers to the surface’s normal direction. This causes solar radiation to be imperfectly concentrated, spreading the flux over a wider region of the focal plane;
- Sun’s shape: The term refers to the effects of the finite dimensions of the solar disk. If the Sun were an extremely small radiation source, all incident solar rays would be almost parallel. However, this is not the case. Even at a distance of about 150 million kilometers, the Sun is still large enough to allow rays from different parts of the solar disk to create significant angles. The correction included due to the finite size of the Sun implies that incident rays on Earth are sampled to form a very narrow cone (Figure 7) with an opening half-angle equal to θs = 4.65 mrad [43].
3.2. FEM Simulation Results with Ideal Solar Irradiance
- (a)
- (b)
- Two-dimensional geometric modeling of the receiver with a concentration surface having a circular shape;
- (c)
- Simulation of a stationary study by entering the following conditions:
- o
- Initial receiver temperature: Ambient = 293.15 K;
- o
- Imposition of the average and constant heat flux calculated in point (a) for the entire concentration area mentioned in (b). The heat source imposed in the focal zone of the receiver was measured as ;
- o
- Convective heat flow from the external edges of the receiver (convection with external air).
3.3. Theoretical Temperature Forecast for Future Development
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature List
A0 | Frontal area of parabolic mirror |
Afoc | Focal area (m2) |
BEM | Boundary Element Method |
CDS | Carbon-dioxide splitting |
CS | Concentrating solar system |
CSP | Concentrated solar power |
CSR | Circumsolar relationship |
CTL | Coal-To-Liquid (CTL) |
Ddish | Dish diameter (m) |
f | Focal length |
FEM | Finite element method |
GTL | Gas-To-Liquid (GTL) |
I0 | Ideal solar irradiance (800 W/m2) |
It | Intensity threshold of reflected rays (10−3 W/m2) |
ni | Refractive index of i-th material |
Pimposed | Power imposed (kW) |
Radiative power concentrated in the reaction zone (kW) | |
Psource | Power of the source (kW) |
Psim | Maximum solar disc angle (mrad) |
Sig | Surface slope error (mrad) |
WS | Water splitting |
, | Absorption coefficient of mirror |
Angle between i-th incident ray and surface normal | |
θs | Maximum opening angle of the solar disk (4.65 mrad) |
Average specific thermal flux (kW/m2) | |
Rim angle |
References
- Agrafiotis, C.; Roeb, M.; Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285. [Google Scholar] [CrossRef]
- Wood, D.; Nwaoha, C.; Towler, B. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 2012, 9, 196–208. [Google Scholar] [CrossRef]
- Karakaya, C.; Kee, R.J. Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog. Energy Combust. Sci. 2016, 55, 60–97. [Google Scholar] [CrossRef]
- Spivey, J.J. Catalysis: Volume 9; Royal Society of Chemistry: London, UK, 2007. [Google Scholar]
- Sosna, M.K.; Goltibeva, I.A.; Kononenko, A.A.; Zaichenko, V.A.; Grishina, I.N.; Korolev, E.V. Prospects of Base Oil Production by GTL Technology in Russia. Chem. Technol. Fuels Oils 2019, 54, 751–758. [Google Scholar] [CrossRef]
- Gupta, P.K.; Kumar, V.; Maity, S. Renewable fuels from different carbonaceous feedstocks: A sustainable route through Fischer–Tropsch synthesis. J. Chem. Technol. Biotechnol. 2020, 96, 853–868. [Google Scholar] [CrossRef]
- Bayon, A.; de la Calle, A.; Ghose, K.K.; Page, A.; McNaughton, R. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review. Int. J. Hydrogen Energy 2020, 45, 12653–12679. [Google Scholar] [CrossRef]
- Giaconia, A.; Caputo, G.; Turchetti, L.; Monteleone, G. A New Generation of Renewable Powered Reforming Processes, Energia, Ambiente e Innovazione; URL to the ENEA Report; Rome, Italy, 2021; Available online: https://www.eai.enea.it/?option=com_content&view=article&id=1242&Itemid=1719 (accessed on 27 July 2022). [CrossRef]
- Agrafiotis, C.; von Storch, H.; Roeb, M.; Sattler, C. Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review. Renew. Sustain. Energy Rev. 2014, 29, 656–682. [Google Scholar] [CrossRef]
- Ngoh, S.K.; Njomo, D. An overview of hydrogen gas production from solar energy. Renew. Sustain. Energy Rev. 2012, 16, 6782–6792. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Chen, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy. Appl. Energy 2015, 156, 223–229. [Google Scholar] [CrossRef]
- Fresno, F.; Fernández-Saavedra, R.; Gómez-Mancebo, M.B.; Vidal, A.; Sánchez, M.; Rucandio, I.; Quejido, A.J.; Romero, M. Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites. Int. J. Hydrogen Energy 2009, 34, 2918–2924. [Google Scholar] [CrossRef]
- Smestad, G.P.; Steinfeld, A. Review: Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts. Ind. Eng. Chem. Res. 2012, 51, 11828–11840. [Google Scholar] [CrossRef]
- Fang, J.; Wu, H.; Liu, T.; Zheng, Z.; Lei, J.; Liu, Q.; Jin, H. Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization. Appl. Energy 2020, 279, 115778. [Google Scholar] [CrossRef]
- Meier, A.; Steinfeld, A. Solar Energy in Thermochemical Processing. In Solar Thermal Energy; Alexopoulos, S., Kalogirou, S.A., Eds.; Springer: New York, NY, USA, 2022; pp. 315–347. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Abanades, S.; Villafan-Vidales, I. CO2valorisation based on Fe3O4/FeO thermochemical redox reactions using concentrated solar energy: Solar thermochemical dissociation of CO2. Int. J. Energy Res. 2012, 37, 598–608. [Google Scholar] [CrossRef]
- Alenazey, F.; Alyousef, Y.; Almisned, O.; Almutairi, G.; Ghouse, M.; Montinaro, D.; Ghigliazza, F. Production of synthesis gas (H2 and CO) by high-temperature Co-electrolysis of H2O and CO2. Int. J. Hydrogen Energy 2015, 40, 10274–10280. [Google Scholar] [CrossRef]
- Küngas, R. Review—Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies. J. Electrochem. Soc. 2020, 167, 044508. [Google Scholar] [CrossRef]
- De Falco, M.; Piemonte, V. Solar enriched methane production by steam reforming process: Reactor design. Int. J. Hydrogen Energy 2011, 36, 7759–7762. [Google Scholar] [CrossRef]
- Ho, C.K. Advances in central receivers for concentrating solar applications. Sol. Energy 2017, 152, 38–56. [Google Scholar] [CrossRef]
- Bekele, E.A.; Ancha, V.R.; Binchebo, T.L. Analysis of Solar Irradiance Variation on Heat Flux and Temperature Distribution for a Dish Concentrator Receiver. ASME Open J. Eng. 2022, 1, 11011. [Google Scholar] [CrossRef]
- Wang, M.; Siddiqui, K. The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system. Renew. Energy 2010, 35, 2501–2513. [Google Scholar] [CrossRef]
- Burgaleta, J.I.; Arias, S.; Ramirez, D. Gemasolar, the first tower thermosolar commercial plant with molten salt storage. In Proceedings of the 17th SolarPACES Conference, Granada, Spain, 20–23 September 2011. [Google Scholar]
- Hering, W.; Stieglitz, R.; Wetzel, T. Application of liquid metals for solar energy systems. EPJ Web Conf. 2012, 33, 03003. [Google Scholar] [CrossRef]
- Agrafiotis, C.; von Storch, H.; Roeb, M.; Sattler, C.; Hydrogen production by solar thermal methane reforming. Chapter 23 of Transition to Renewable Energy Systems. Wiley-VCH Verlag GmbH & Co. KGaA. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527673872.ch23 (accessed on 27 July 2022). [CrossRef]
- Chuayboon, S.; Abanades, S. An overview of solar decarbonization processes, reacting oxide materials, and thermochemical reactors for hydrogen and syngas production. Int. J. Hydrogen Energy 2020, 45, 25783–25810. [Google Scholar] [CrossRef]
- Rathod, V.P.; Shete, J.; Bhale, P.V. Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. Int. J. Hydrogen Energy 2015, 41, 132–138. [Google Scholar] [CrossRef]
- Scheffler, M.; Colombo, P. Cellular Ceramics: Structure, Manufacturing, Properties and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Berman, A.; Karn, R.K.; Epstein, M. Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production. Green Chem. 2007, 9, 626–631. [Google Scholar] [CrossRef]
- Klein, H.H.; Karni, J.; Rubin, R. Dry Methane Reforming Without a Metal Catalyst in a Directly Irradiated Solar Particle Reactor. J. Sol. Energy Eng. 2009, 131, 021001. [Google Scholar] [CrossRef]
- Karni, J.; Kribus, A.; Doron, P.; Rubin, R.; Fiterman, A.; Sagie, D. The DIAPR: A High-Pressure, High-Temperature Solar Receiver. J. Sol. Energy Eng. 1997, 119, 74–78. [Google Scholar] [CrossRef]
- Hosseini, F.; Siavashi, M. Optimization of SMR process for syngas production through a solar-assisted thermo-chemical reactor with a multi-layered porous core. Sol. Energy 2021, 230, 208–221. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.J.; Saravanan, A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 2019, 33, 131–147. [Google Scholar] [CrossRef]
- Foit, S.R.; Vinke, I.C.; de Haart, L.G.J.; Eichel, R.-A. Power-to-Syngas: An Enabling Technology for the Transition of the Energy System? Angew. Chem. Int. Ed. 2017, 56, 5402–5411. [Google Scholar] [CrossRef]
- Hernández, S.; Farkhondehfal, M.A.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation. Green Chem. 2017, 19, 2326–2346. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, L.; Agrafiotis, C.; Vieten, J.; Roeb, M.; Sattler, C. Solar fuels production: Two-step thermochemical cycles with cerium-based oxides. Prog. Energy Combust. Sci. 2019, 75, 100785. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Solé, A.; Fontanet, X.; Barreneche, C.; Jové, A.; Gallas, M.; Prieto, C.; Fernández, A.I. Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Appl. Energy 2017, 185, 836–845. [Google Scholar] [CrossRef]
- Pan, H.; Li, Y.; Zhu, L.; Lu, Y. Solar-driven H2O/CO2 conversion to fuels via two-step electro-thermochemical cycle in a solid oxide electrochemical cell. Energy Convers. Manag. 2022, 259, 115578. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Dai, Y.; Wang, C.-H. Thermodynamic analysis of an epitrochoidal rotary reactor for solar hydrogen production via a water-splitting thermochemical cycle using nonstoichiometric ceria. Energy Convers. Manag. 2022, 268, 115968. [Google Scholar] [CrossRef]
- Sami, A.; Mehrpooya, M.; Noorpoor, A. Investigation of an integrated thermochemical hydrogen production and high temperature solar thermochemical energy storage and CO2 capture process. Appl. Therm. Eng. 2022, 214, 118820. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Alim, M.; Alam, T.; Mofijur, M.; Ahmed, S.; Perkins, G. A critical review on the development and challenges of concentrated solar power technologies. Sustain. Energy Technol. Assessments 2021, 47, 101434. [Google Scholar] [CrossRef]
- How to Model Solar Concentrators with the Ray Optics Module, COMSOL. (n.d.). Available online: https://www.comsol.it/blogs/how-to-model-solar-concentrators-with-the-ray-optics-module/ (accessed on 20 June 2022).
- Manuale Uso e Manutenzione—Concentratore Solare a Disco; Luminari, L. (Ed.) Technical Data Sheet; ELMA Srl: Riva del Garda, TN, Italy, 2019. [Google Scholar]
- Colombo, L. Studio Parametrico Delle Prestazioni Energetiche di Collettori Solari con Concentratori Parabolici Composti (CPC) Nella Produzione di Calore a Media Temperature; Politecnico di Milano: Milan, Italy, 2012. [Google Scholar]
- Lee, H. The geometric-optics relation between surface slope error and reflected ray error in solar concentrators. Sol. Energy 2014, 101, 299–307. [Google Scholar] [CrossRef]
- Buie, D.; Monger, A.; Dey, C. Sunshape distributions for terrestrial solar simulations. Sol. Energy 2003, 74, 113–122. [Google Scholar] [CrossRef]
- Alqurashi, M.M.; Ganash, E.A.; Altuwirqi, R.M. Simulation of a Low Concentrator Photovoltaic System Using COMSOL. Appl. Sci. 2022, 12, 3450. [Google Scholar] [CrossRef]
- Ubando, A.T.; Conversion, A.; Barroca, R.B.; Enano, N.H.; Espina, R.U. Computational Fluid Dynamics on Solar Dish in a Concentrated Solar Power: A Bibliometric Review. Solar 2022, 2, 251–273. [Google Scholar] [CrossRef]
- Baig, H.; Sarmah, N.; Heasman, K.C.; Mallick, T.K. Numerical modelling and experimental validation of a low concentrating photovoltaic system. Sol. Energy Mater. Sol. Cells 2013, 113, 201–219. [Google Scholar] [CrossRef]
- Zayed, M.E.; Zhao, J.; Elsheikh, A.H.; Li, W.; Sadek, S.; Aboelmaaref, M.M. A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 2020, 283, 124664. [Google Scholar] [CrossRef]
- Triscari, G.; Santovito, M.; Bressan, M.; Papurello, D. Experimental and model validation of a phase change material heat exchanger integrated into a real building. Int. J. Energy Res. 2021, 45, 18222–18236. [Google Scholar] [CrossRef]
- Papurello, D.; Bertino, D.; Santarelli, M. CFD Performance Analysis of a Dish-Stirling System for Microgeneration. Processes 2021, 9, 1142. [Google Scholar] [CrossRef]
Modeling procedure in Comsol Multiphysics | |||
MODEL CREATION: Selection of the model geometry → 3D geometry Selection of physics → optics > ray optics > geometrical optics (GOP). Study definition → ray-tracing simulation | |||
GEOMETRICAL AND PHYSICAL PARAMETERS [44]: | |||
Name | Expression | Value | Description |
f | 0.92 (m) | 0.92 m | Focal length |
Phi | 45 (deg) | 0.7854 rad | Rim angle |
D | 4 × f × (csc(phi)-cot(phi)) | 1.80 m | Dish diameter |
A | Pi × d^2/4 | 2.544 m2 | Dish projected surface area |
Psim | 4.65 (mrad) | 0.00465 rad | Maximum solar-disc angle |
Sig | 1.75 (mrad) | 0.00175 rad | Surface slope error |
I0 | 0.8 (kW/m2) | 800 W/m2 | Solar irradiance |
GEOMETRY AND CREATION OF THE MESH: Receiver → horizontal cylinder Solar dish → Ray Optics Module > 3D > mirrors > Paraboloidal Reflector Shell 3D | |||
GEOMETRICAL OPTICS (GOP): Illuminated Surface 1 → ideal reflector Illuminated Surface 2 → real reflector Wall I → focal plane Deposited ray power → incident thermal flux on the focal plane (W/m2) |
Case | Maximum Thermal Flux Deposited in Focal Plane (W/m2) | Target Surface (m2) | Maximum Power in Target (kW) |
---|---|---|---|
Ideal | 2.41…107 | 3.141…10−4 (r = 1 cm) | 7.57 |
Real | 1.15…107 | 3.61 |
2019 | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
2019–2021 | Global Radiation (W/m2) | Uncertainty (W/m2) | Global Radiation (W/m2) | Uncertainty (W/m2) | Global Radiation (W/m2) | Uncertainty (W/m2) |
Summer | 430.0 | 28.1 | 430.1 | 28.2 | 411.7 | 15.1 |
Autumn | 191.3 | 14.0 | 226.6 | 14.3 | 228.4 | 12.0 |
Winter | 115.0 | 18.1 | 213.9 | 17.3 | 196.6 | 17.0 |
Spring | 209.3 | 28.2 | 314.8 | 28.5 | 327.2 | 10.7 |
12/12—13:00 | 11/1—13:00 | 22/1—13:00 | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Model | Experimental | Model | Experimental | Model | Experimental |
455 | 442.8 | 466 | 461.3 | 478 | 472.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montà, E.; Santarelli, M.; Papurello, D. Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation. Processes 2022, 10, 1698. https://doi.org/10.3390/pr10091698
Montà E, Santarelli M, Papurello D. Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation. Processes. 2022; 10(9):1698. https://doi.org/10.3390/pr10091698
Chicago/Turabian StyleMontà, Edoardo, Massimo Santarelli, and Davide Papurello. 2022. "Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation" Processes 10, no. 9: 1698. https://doi.org/10.3390/pr10091698
APA StyleMontà, E., Santarelli, M., & Papurello, D. (2022). Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation. Processes, 10(9), 1698. https://doi.org/10.3390/pr10091698