Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Gravimetric Analysis
3.2. Particle Size Distribution Analysis
3.3. Photoluminescence Spectroscopy Analysis
3.4. Fourier Transform—Infrared Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosmans, A.; Vanderreydt, I.; Geysen, D.; Helsen, L. The Crucial Role of Waste-to-Energy Technologies in Enhanced Landfill Mining: A Technology Review. J. Clean. Prod. 2013, 55, 10–23. [Google Scholar] [CrossRef]
- Ruiz, J.A.; Juárez, M.C.; Morales, M.P.; Muñoz, P.; Mendívil, M.A. Biomass Gasification for Electricity Generation: Review of Current Technology Barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Saleem, F.; Harris, J.; Zhang, K.; Harvey, A. Non-Thermal Plasma as a Promising Route for the Removal of Tar from the Product Gas of Biomass Gasification—A Critical Review. Chem. Eng. J. 2020, 382, 122761. [Google Scholar] [CrossRef]
- Rueda, Y.G.; Helsen, L. The Role of Plasma in Syngas Tar Cracking. Biomass Convers. Biorefinery 2020, 10, 857–871. [Google Scholar] [CrossRef]
- Malavika, J.P.; Shobana, C.; Sundarraj, S.; Ganeshbabu, M.; Kumar, P.; Selvan, R.K. Green Synthesis of Multifunctional Carbon Quantum Dots: An Approach in Cancer Theranostics. Biomater. Adv. 2022, 136, 212756. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhu, Y.; Zhao, X. On-off-on Nanosensors of Carbon Quantum Dots Derived from Coal Tar Pitch for the Detection of Cu2+, Fe3+, and L-Ascorbic Acid. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 250, 119325. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, B.P.; da Silva Abreu, F.O.M. Carbon Quantum Dots Synthesis from Waste and By-Products: Perspectives and Challenges. Mater. Lett. 2021, 282, 128764. [Google Scholar] [CrossRef]
- Vinoth Kumar, J.; Kavitha, G.; Arulmozhi, R.; Arul, V.; Singaravadivel, S.; Abirami, N. Green Sources Derived Carbon Dots for Multifaceted Applications. J. Fluoresc. 2021, 31, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.C.; Shih, Z.Y.; Lee, C.H.; Chang, H.T. Synthesis and Analytical Applications of Photoluminescent Carbon Nanodots. Green Chem. 2012, 14, 917–920. [Google Scholar] [CrossRef]
- Ding, S.; Gao, Y.; Ni, B.; Yang, X. Green Synthesis of Biomass-Derived Carbon Quantum Dots as Fluorescent Probe for Fe3+ Detection. Inorg. Chem. Commun. 2021, 130, 108636. [Google Scholar] [CrossRef]
- Materazzi, M.; Lettieri, P.; Mazzei, L.; Taylor, R.; Chapman, C. Tar Evolution in a Two Stage Fluid Bed-Plasma Gasification Process for Waste Valorization. Fuel Process. Technol. 2014, 128, 146–157. [Google Scholar] [CrossRef]
- Materazzi, M.; Lettieri, P.; Taylor, R.; Chapman, C. Performance Analysis of RDF Gasification in a Two Stage Fluidized Bed-Plasma Process. Waste Manag. 2016, 47, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Nurhilal, O.; Faizal, F.; Soedarsono, H.P. Pengaruh Laju Aliran Udara Terhadap Konsentrasi Kandungan Gas Mampu Bakar dan Daya Gasifikasi. J. Ilmu Inov. Fis. 2019, 3, 84–90. [Google Scholar]
- Oveisi, E.; Sokhansanj, S.; Lau, A.; Lim, C.J.; Bi, X.; Ebadian, M.; Preto, F.; Mui, C.; Gill, R. In-Depot Upgrading the Quality of Fuel Chips for a Commercial Gasification Plant. Biomass Bioenergy 2018, 108, 138–145. [Google Scholar] [CrossRef]
- Dafiqurrohman, H.; Bagus Setyawan, M.I.; Yoshikawa, K.; Surjosatyo, A. Tar Reduction Using an Indirect Water Condenser and Rice Straw Filter after Biomass Gasification. Case Stud. Therm. Eng. 2020, 21, 100696. [Google Scholar] [CrossRef]
- Zubair Yahaya, A.; Rao Somalu, M.; Muchtar, A.; Anwar Sulaiman, S.; Wan Daud, W.R. Characterization of Tar Formation during High Temperature Gasification of Different Chemical Compositions in Biomass. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019; Volume 268. [Google Scholar]
- Yu, J.; Liu, C.; Yuan, K.; Lu, Z.; Cheng, Y.; Li, L.; Zhang, X.; Jin, P.; Meng, F.; Liu, H. Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions. Nanomaterials 2018, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, B.; Donnini, R.; Ghezzi, F.; Sansonetti, A.; Giovanella, U.; la Ferla, B. Nitrogen-Doped Carbon Quantum Dots Obtained Hydrothermally from Citric Acid and Urea: The Role of the Specific Nitrogen Centers in Their Electrochemical and Optical Responses. Electrochim. Acta 2021, 387, 138557. [Google Scholar] [CrossRef]
- Tyutrin; Wang, R.; Martynovich, E.F. Luminescent Properties of Carbon Quantum Dots Synthesized by Microplasma Method. J. Lumin. 2022, 246, 118806. [Google Scholar] [CrossRef]
Parameter | 0 W | 42 W | 85 W |
---|---|---|---|
Reactor type | Updraft | Updraft | Updraft |
Biomass | Corncob | Corncob | Corncob |
Reactor temperature | 828 °C | 783 °C | 775 °C |
Water bath temperature | 22.3 °C | 21.5 °C | 20.5 °C |
Ice bath temperature | −17.4 °C | −15.7 °C | −18.7 °C |
Sampling time | 600 s | 600 s | 600 s |
Flow rate | 10 L min−1 | 10 L min−1 | 10 L min−1 |
Solvent | Acetone | Acetone | Acetone |
Plasma Power (W) | Tar Concentration (g L−1) |
---|---|
0 | 0.0562 |
42 | 0.0221 |
85 | 0.0073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soedarsono, H.P.; Faizal, F.; Panatarani, C.; Joni, I.M. Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method. Processes 2022, 10, 1733. https://doi.org/10.3390/pr10091733
Soedarsono HP, Faizal F, Panatarani C, Joni IM. Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method. Processes. 2022; 10(9):1733. https://doi.org/10.3390/pr10091733
Chicago/Turabian StyleSoedarsono, Harry Poetra, Ferry Faizal, Camellia Panatarani, and I Made Joni. 2022. "Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method" Processes 10, no. 9: 1733. https://doi.org/10.3390/pr10091733
APA StyleSoedarsono, H. P., Faizal, F., Panatarani, C., & Joni, I. M. (2022). Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method. Processes, 10(9), 1733. https://doi.org/10.3390/pr10091733