Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms
Abstract
:1. Introduction
2. Parameters in Metal Removal from Wastewaters—Discontinuous versus Continuous Systems
3. Microorganisms Immobilization for Heavy Metals Removal
4. Performance of Continuous Removal of Heavy Metals Using Microorganisms
5. Sorption-Desorption of Heavy Metals Removal Using Microorganisms
6. Life Cycle Analysis (LCA) of Metal Removal from Wastewaters Using Microorganisms in Continuous Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diaconu, M.; Pavel, L.V.; Hlihor, R.M.; Rosca, M.; Fertu, D.I.; Lenz, M.; Corvini, P.X.; Gavrilescu, M. Characterization of Heavy Metal Toxicity in Some Plants and Microorganisms—A Preliminary Approach for Environmental Bioremediation. New Biotechnol. 2020, 56, 130–139. [Google Scholar] [CrossRef]
- Filote, C.; Roșca, M.; Hlihor, R.-M. Overview of Using Living and Non-Living Microorganisms for the Removal of Heavy Metals From Wastewaters. Res. J. Agric. Sci. 2020, 52, 22–32. [Google Scholar]
- Simionov, I.A.; Cristea, V.; Petrea, Ş.M.; Sîrbu, E.B. Evaluation of Heavy Metals Concentration Dynamics in Fish from the Black Sea Coastal Area: An Overview. Environ. Eng. Manag. J. 2019, 18, 1097–1110. [Google Scholar] [CrossRef]
- Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes 2021, 9, 1696. [Google Scholar] [CrossRef]
- Ştefan, D.S.; Neacşu, N.; Ştefan, M.; Sandulovici, R.; Şerbǎnescu, C. Distribution of Metals in Water, Sediments, Aquatic Plants and Fish from Snagov Lake, Romania. Environ. Eng. Manag. J. 2019, 18, 1207–1218. [Google Scholar] [CrossRef]
- Pavel, V.L.; Bulgariu, D.; Bulgariu, L.; HIihor, R.M.; Gavrilescu, M. Analysis of Factors Determining the Behaviour of Chromium in Some Romanian Soils. Environ. Eng. Manag. J. 2010, 9, 89–94. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals and Metalloids as Micronutrients for Plants and Animals. In Heavy Metals in Soils; Alloway, B.J., Ed.; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4469-1. [Google Scholar]
- Jun, Z.; Wenke, W.; Yani, G.; Zhoufeng, W.; Shumiao, C. Effect of Cd2+ Stress on Seed Germination Characteristics of Ryegrass, Indian Mustard and Grain Amaranth. Environ. Eng. Manag. J. 2019, 18, 1875–1884. [Google Scholar] [CrossRef]
- Mirghaffari, N.; Moeini, E.; Farhadian, O. Biosorption of Cd and Pb Ions from Aqueous Solutions by Biomass of the Green Microalga, Scenedesmus quadricauda. J. Appl. Phycol. 2014, 27, 311–320. [Google Scholar] [CrossRef]
- Tounsadi, H.; Khalidi, A.; Farnane, M.; Machrouhi, A.; Elhalil, A.; Barka, N. Efficient Removal of Heavy Metals by Koh Activated Diplotaxis harra Biomass: Experimental Design Optimization. Environ. Eng. Manag. J. 2019, 18, 651–664. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Luan, Y. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. Int. J. Environ. Res. Public. Health 2015, 12, 14958–14973. [Google Scholar] [CrossRef] [Green Version]
- Kőnig-Péter, A.; Kilár, F.; Pernyeszi, T. Copper(II) Biosorption Characteristics of Lyophilized and Thermally Treated Pseudomonas Cells. Environ. Eng. Manag. J. 2019, 18, 455–464. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Leon, F.; Curteanu, S.; Tavares, T.; Gavrilescu, M. Experimental Analysis and Mathematical Prediction of Cd (II) Removal by Biosorption Using Support Vector Machines and Genetic Algorithms. New Biotechnol. 2015, 32, 358–368. [Google Scholar] [CrossRef]
- Rosca, M.; Hlihor, R.M.; Cozma, P.; ComǍniţǍ, E.D.; Simion, I.M.; Gavrilescu, M. Potential of Biosorption and Bioaccumulation Processes for Heavy Metals Removal in Bioreactors. In Proceedings of the 2015 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 19–21 November 2015; pp. 31–34. [Google Scholar] [CrossRef]
- Amirnia, S.; Ray, M.B.; Margaritis, A. Heavy Metals Removal from Aqueous Solutions Using Saccharomyces cerevisiae in a Novel Continuous Bioreactor-Biosorption System. Chem. Eng. J. 2015, 264, 863–872. [Google Scholar] [CrossRef]
- Roşca, M.; Hlihor, R.-M.; Cozma, P.; Drăgoi, E.N.; Diaconu, M.; Silva, B.; Tavares, T.; Gavrilescu, M. Comparison of Rhodotorula sp. and Bacillus megaterium in the Removal of Cadmium Ions from Liquid Effluents. Green Process. Synth. 2018, 7, 74–88. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal Sorption by Algal Biomass: From Batch to Continuous System. Algal Res. 2016, 18, 95–109. [Google Scholar] [CrossRef]
- Crater, J.S.; Lievense, J.C. Scale-up of Industrial Microbial Processes. FEMS Microbiol. Lett. 2018, 365, fny138. [Google Scholar] [CrossRef]
- Thirunavukkarasu, A.; Nithya, R.; Sivashankar, R. Continuous Fixed-Bed Biosorption Process: A Review. Chem. Eng. J. Adv. 2021, 8, 100188. [Google Scholar] [CrossRef]
- Penia Kresnowati, M.T.A.; Chen, X.D. Continuous Operation. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 527–535. ISBN 978-0-08-088504-9. [Google Scholar]
- Favier, L.; Ungureanu, C.V.; Simion, A.I.; Bahrim, G.; Vial, C. Enhancing the Biodegradation Efficiency of a Emergent Refractory Water Pollutant by a Bacterial Isolate through a Statistical Process Optimization Approach. Process Saf. Environ. Prot. 2021, 148, 1133–1145. [Google Scholar] [CrossRef]
- Meena, M.; Aamir, M.; Kumar, V.; Swapnil, P.; Upadhyay, R.S. Evaluation of Morpho-Physiological Growth Parameters of Tomato in Response to Cd Induced Toxicity and Characterization of Metal Sensitive NRAMP3 Transporter Protein. Environ. Exp. Bot. 2018, 148, 144–167. [Google Scholar] [CrossRef]
- Cozma, P.; Gavrilescu, M. Airlift Reactors: Hydrodynamics, Mass Transfer and Applications in Environmental Remediation. Environ. Eng. Manag. J. 2010, 9, 681–702. [Google Scholar] [CrossRef]
- Podder, M.S. Phycoremediation of Arsenic from Wastewaters by Chlorella pyrenoidosa. Groundw. Sustain. Dev. 2015, 1, 78–91. [Google Scholar] [CrossRef]
- Vendruscolo, F.; da Rocha Ferreira, G.L.; Antoniosi Filho, N.R. Biosorption of Hexavalent Chromium by Microorganisms. Int. Biodeterior. Biodegrad. 2017, 119, 87–95. [Google Scholar] [CrossRef]
- Tang, X.; Huang, Y.; Li, Y.; Wang, L.; Pei, X.; Zhou, D.; He, P.; Hughes, S.S. Study on Detoxification and Removal Mechanisms of Hexavalent Chromium by Microorganisms. Ecotoxicol. Environ. Saf. 2021, 208, 111699. [Google Scholar] [CrossRef]
- Gopi Kiran, M.; Pakshirajan, K.; Das, G. Heavy Metal Removal from Aqueous Solution Using Sodium Alginate Immobilized Sulfate Reducing Bacteria: Mechanism and Process Optimization. J. Environ. Manage. 2018, 218, 486–496. [Google Scholar] [CrossRef]
- Xu, S.; Xing, Y.; Liu, S.; Hao, X.; Chen, W.; Huang, Q. Characterization of Cd2+ Biosorption by Pseudomonas sp. Strain 375, a Novel Biosorbent Isolated from Soil Polluted with Heavy Metals in Southern China. Chemosphere 2020, 240, 124893. [Google Scholar] [CrossRef]
- Samuel, J.; Pulimi, M.; Paul, M.L.; Maurya, A.; Chandrasekaran, N.; Mukherjee, A. Batch and Continuous Flow Studies of Adsorptive Removal of Cr(VI) by Adapted Bacterial Consortia Immobilized in Alginate Beads. Bioresour. Technol. 2013, 128, 423–430. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and Removal of Toxic Heavy Metals by Metal Tolerating Bacteria for Bioremediation of Metal Contamination: A Comprehensive Review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Buema, G.; Lupu, N.; Chiriac, H.; Herea, D.D.; Favier, L.; Ciobanu, G.; Forminte Litu, L.; Harja, M. Fly ash magnetic adsorbent for cadmium ion removal from an aqueous solution. J. Appl. Life Sci. Environ. 2021, 185, 42–50. [Google Scholar] [CrossRef]
- Kim, N.; Seo, J.H.; Yun, Y.-S.; Park, D. New Insight into Continuous Recirculation-Process for Treating Arsenate Using Bacterial Biosorbent. Bioresour. Technol. 2020, 316, 123961. [Google Scholar] [CrossRef]
- Patel, H. Batch and Continuous Fixed Bed Adsorption of Heavy Metals Removal Using Activated Charcoal from Neem (Azadirachta indica) Leaf Powder. Sci. Rep. 2020, 10, 16895. [Google Scholar] [CrossRef]
- Atmakidis, T.; Kenig, E.Y. Numerical Analysis of Mass Transfer in Packed-Bed Reactors with Irregular Particle Arrangements. Chem. Eng. Sci. 2012, 81, 77–83. [Google Scholar] [CrossRef]
- Kadic, E.; Heindel, T.J. An Introduction to Bioreactor Hydrodynamics and Gas-Liquid Mass Transfer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-86970-3. [Google Scholar]
- Sarti, A.; Tavares Vieira, L.G.; Foresti, E.; Zaiat, M. Influence of the Liquid-Phase Mass Transfer on the Performance of a Packed-Bed Bioreactor for Wastewater Treatment. Bioresour. Technol. 2001, 78, 231–238. [Google Scholar] [CrossRef]
- Warnock, J.N.; Bratch, K.; Al-Rubeai, M. Packed Bed Bioreactors. In Bioreactors for Tissue Engineering; Chaudhuri, J., Al-Rubeai, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 87–113. ISBN 978-1-4020-3740-5. [Google Scholar]
- Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J. The Improved Methods of Heavy Metals Removal by Biosorbents: A Review. Environ. Pollut. 2020, 258, 113777. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of Copper(II) by Immobilizing Saccharomyces cerevisiae on the Surface of Chitosan-Coated Magnetic Nanoparticles from Aqueous Solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef]
- Emami Moghaddam, S.A.; Harun, R.; Mokhtar, M.N.; Zakaria, R. Potential of Zeolite and Algae in Biomass Immobilization. BioMed Res. Int. 2018, 2018, 6563196. [Google Scholar] [CrossRef]
- Valdivia-Rivera, S.; Ayora-Talavera, T.; Lizardi-Jiménez, M.A.; García-Cruz, U.; Cuevas-Bernardino, J.C.; Pacheco, N. Encapsulation of Microorganisms for Bioremediation: Techniques and Carriers. Rev. Environ. Sci. Biotechnol. 2021, 20, 815–838. [Google Scholar] [CrossRef]
- Li, S. Fundamentals of Biochemical Reaction Engineering. In Chemical Reaction Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 491–539. ISBN 978-0-12-410416-7. [Google Scholar]
- Bouabidi, Z.B.; El-Naas, M.H.; Zhang, Z. Immobilization of Microbial Cells for the Biotreatment of Wastewater: A Review. Environ. Chem. Lett. 2019, 17, 241–257. [Google Scholar] [CrossRef]
- Kőnig-Péter, A.; Csudai, C.; Felinger, A.; Kilár, F.; Pernyeszi, T. Column Studies of Heavy Metal Biosorption by Immobilized Spirulina platensis-Maxima Cells. Desalination Water Treat. 2016, 57, 28340–28348. [Google Scholar] [CrossRef]
- Ahmad, A.; Bhat, A.H.; Buang, A. Biosorption of Transition Metals by Freely Suspended and Ca-Alginate Immobilised with Chlorella vulgaris: Kinetic and Equilibrium Modeling. J. Clean. Prod. 2018, 171, 1361–1375. [Google Scholar] [CrossRef]
- Ding, H.; Luo, X.; Zhang, X.; Yang, H. Alginate-Immobilized Aspergillus Niger: Characterization and Biosorption Removal of Thorium Ions from Radioactive Wastewater. Colloids Surf. Physicochem. Eng. Asp. 2019, 562, 186–195. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Wajda, Ł.; Tarko, T. The Immobilization of Arthrospira platensis Biomass in Different Matrices—A Practical Application for Lead Biosorption. J. Environ. Sci. Health Part A 2013, 48, 509–517. [Google Scholar] [CrossRef]
- Naskar, A.; Bera, D. Mechanistic Exploration of Ni(II) Removal by Immobilized Bacterial Biomass and Interactive Influence of Coexisting Surfactants. Environ. Prog. Sustain. Energy 2018, 37, 342–354. [Google Scholar] [CrossRef]
- Gokhale, S.V.; Jyoti, K.K.; Lele, S.S. Modeling of Chromium (VI) Biosorption by Immobilized Spirulina platensis in Packed Column. J. Hazard. Mater. 2009, 170, 735–743. [Google Scholar] [CrossRef]
- Hasan, S.H.; Srivastava, P.; Talat, M. Biosorption of Lead Using Immobilized Aeromonas hydrophila Biomass in up Flow Column System: Factorial Design for Process Optimization. J. Hazard. Mater. 2010, 177, 312–322. [Google Scholar] [CrossRef]
- Wen, X.; Du, C.; Zeng, G.; Huang, D.; Zhang, J.; Yin, L.; Tan, S.; Huang, L.; Chen, H.; Yu, G.; et al. A Novel Biosorbent Prepared by Immobilized Bacillus licheniformis for Lead Removal from Wastewater. Chemosphere 2018, 200, 173–179. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Speciation and Selective Biosorption of Cr(III) and Cr(VI) Using Nanosilica Immobilized-Fungi Biosorbents. J. Environ. Eng. 2015, 141, 04014079. [Google Scholar] [CrossRef]
- Choudhury, P.R.; Bhattacharya, P.; Ghosh, S.; Majumdar, S.; Saha, S.; Sahoo, G.C. Removal of Cr(VI) by Synthesized Titania Embedded Dead Yeast Nanocomposite: Optimization and Modeling by Response Surface Methodology. J. Environ. Chem. Eng. 2017, 5, 214–221. [Google Scholar] [CrossRef]
- Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Hlihor, R.-M.; Apostol, L.-C.; Gavrilescu, M. Environmental Bioremediation by Biosorption and Bioaccumulation: Principles and Applications. In Enhancing Cleanup of Environmental Pollutants; Anjum, N.A., Gill, S.S., Tuteja, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 289–315. ISBN 978-3-319-55425-9. [Google Scholar]
- Rosca, M.; Hlihor, R.-M.; Gavrilescu, M. Bioremediation of Persistent Toxic Substances: From Conventional to New Approaches in Using Microorganisms and Plants. In Microbial Technology for the Welfare of Society; Arora, P.K., Ed.; Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 17, pp. 289–312. ISBN 9789811388439. [Google Scholar]
- Diaconu, M.; Rosca, M.; Cozma, P.; Minut, M.; Smaranda, C.; Hlihor, R.-M.; Gavrilescu, M. Toxicity and Microbial Bioremediation of Chromium Contaminated Effluents. In Proceedings of the 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 29 October 2020; pp. 1–4. [Google Scholar]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of Biosorption for Removal of Heavy Metals from Wastewater. In Biosorption; Derco, J., Vrana, B., Eds.; InTech: London, UK, 2018; ISBN 978-1-78923-472-5. [Google Scholar]
- Bulgariu, L.; Bulgariu, D.; Rusu, C. Marine Algae Biomass for Removal of Heavy Metal Ions. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 611–648. ISBN 978-3-642-53970-1. [Google Scholar]
- Gavrilescu, M. Biosorption in Environmental Remediation. In Bioremediation Technology; Fulekar, M.H., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 35–99. ISBN 978-90-481-3677-3. [Google Scholar]
- Meringer, A.; Liffourrena, A.S.; Heredia, R.M.; Lucchesi, G.I.; Boeris, P.S. Removal of Copper and/or Zinc Ions from Synthetic Solutions by Immobilized, Non-Viable Bacterial Biomass: Batch and Fixed-Bed Column Lab-Scale Study. J. Biotechnol. 2021, 328, 87–94. [Google Scholar] [CrossRef]
- Contreras-Cortés, A.G.; Almendariz-Tapia, F.J.; Cortez-Rocha, M.O.; Burgos-Hernández, A.; Rosas-Burgos, E.C.; Rodríguez-Félix, F.; Gómez-Álvarez, A.; Quevedo-López, M.Á.; Plascencia-Jatomea, M. Biosorption of Copper by Immobilized Biomass of Aspergillus australensis. Effect of Metal on the Viability, Cellular Components, Polyhydroxyalkanoates Production, and Oxidative Stress. Environ. Sci. Pollut. Res. 2020, 27, 28545–28560. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Hu, J.; Wang, J. Removal of Sr2+, Co2+, and Cs+ from Aqueous Solution by Immobilized Saccharomyces cerevisiae with Magnetic Chitosan Beads. Environ. Prog. Sustain. Energy 2017, 36, 989–996. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Tao, Y.; Ke, T.; Li, S.; Wang, P.; Chen, L. Enhanced Removal of Trichlorfon and Cd(II) from Aqueous Solution by Magnetically Separable Chitosan Beads Immobilized Aspergillus Sydowii. Int. J. Biol. Macromol. 2020, 148, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Roane, T.M.; Pepper, I.L.; Gentry, T.J. Microorganisms and Metal Pollutants. In Environmental Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 415–439. ISBN 978-0-12-394626-3. [Google Scholar]
- Huang, F.; Li, K.; Wu, R.-R.; Yan, Y.-J.; Xiao, R.-B. Insight into the Cd2+ Biosorption by Viable Bacillus cereus RC-1 Immobilized on Different Biochars: Roles of Bacterial Cell and Biochar Matrix. J. Clean. Prod. 2020, 272, 122743. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Engineering Interface between Bioenergy Recovery and Biogas Desulfurization: Sustainability Interplays of Biochar Application. Renew. Sustain. Energy Rev. 2022, 157, 112053. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of Heavy Metal Ions by Sodium Alginate Based Adsorbent-a Review and New Perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Abdel Rahim, M.M. Sustainable Use of Natural Zeolites in Aquaculture: A Short Review. Oceanogr. Fish. Open Access J. 2017, 2, 1–5. [Google Scholar] [CrossRef]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, X.-J.; Domene, X.; Alcañiz, J.-M.; Liao, X.; Palet, C. Comparison of Biochars Derived from Different Types of Feedstock and Their Potential for Heavy Metal Removal in Multiple-Metal Solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Enhanced Biosorptive Removal of Cadmium from Aqueous Solutions by Silicon Dioxide Nano-Powder, Heat Inactivated and Immobilized Aspergillus Ustus. Desalination 2011, 279, 291–297. [Google Scholar] [CrossRef]
- Quintelas, C.; Rocha, Z.; Silva, B.; Fonseca, B.; Figueiredo, H.; Tavares, T. Biosorptive Performance of an Escherichia Coli Biofilm Supported on Zeolite NaY for the Removal of Cr(VI), Cd(II), Fe(III) and Ni(II). Chem. Eng. J. 2009, 152, 110–115. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Yakup Arıca, M. Construction a Hybrid Biosorbent Using Scenedesmus quadricauda and Ca-Alginate for Biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and Equilibrium Studies. Bioresour. Technol. 2009, 100, 186–193. [Google Scholar] [CrossRef]
- Quiton, K.G.; Doma, B.; Futalan, C.M.; Wan, M.-W. Removal of Chromium(VI) and Zinc(II) from Aqueous Solution Using Kaolin-Supported Bacterial Biofilms of Gram-Negative E. Coli and Gram-Positive Staphylococcus epidermidis. Sustain. Environ. Res. 2018, 28, 206–213. [Google Scholar] [CrossRef]
- Akhtar, N.; Iqbal, M.; Zafar, S.I.; Iqbal, J. Biosorption Characteristics of Unicellular Green Alga Chlorella sorokiniana Immobilized in Loofa Sponge for Removal of Cr(III). J. Environ. Sci. 2008, 20, 231–239. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abdou, A.E.H.; Mohamed, S.M.S.; Osman, M.M. Engineered Staphylococcus aureus via Immobilization on Magnetic Fe3O4-Phthalate Nanoparticles for Biosorption of Divalent Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4, 3810–3824. [Google Scholar] [CrossRef]
- Seo, H.; Lee, M.; Wang, S. Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads. Environ. Eng. Res. 2013, 18, 45–53. [Google Scholar] [CrossRef]
- Preetha, B.; Viruthagiri, T. Batch and Continuous Biosorption of Chromium(VI) by Rhizopus arrhizus. Sep. Purif. Technol. 2007, 57, 126–133. [Google Scholar] [CrossRef]
- Aftab, K.; Akhtar, K.; Jabbar, A. Batch and Column Study for Pb-II Remediation from Industrial Effluents Using Glutaraldehyde-Alginate-Fungi Biocomposites. Ecol. Eng. 2014, 73, 319–325. [Google Scholar] [CrossRef]
- Sriharsha, D.V.; Kumar, R.L.; Savitha, J. Immobilized Fungi on Luffa cylindrica: An Effective Biosorbent for the Removal of Lead. J. Taiwan Inst. Chem. Eng. 2017, 80, 589–595. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [Google Scholar] [CrossRef]
- Sulaymon, H.A. Column Biosorption of Lead, Cadmium, Copper, and Arsenic Ions onto Algae. J. Bioprocess. Biotech. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Kumar, R.; Bhatia, D.; Singh, R.; Rani, S.; Bishnoi, N.R. Sorption of Heavy Metals from Electroplating Effluent Using Immobilized Biomass Trichoderma Viride in a Continuous Packed-Bed Column. Int. Biodeterior. Biodegrad. 2011, 65, 1133–1139. [Google Scholar] [CrossRef]
- Pakshirajan, K.; Swaminathan, T. Biosorption of Copper and Cadmium in Packed Bed Columns with Live Immobilized Fungal Biomass of Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 2009, 157, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Girish, C.R.; Ramachandra, M.V. Removal of Phenol from Wastewater in Packed Bed and Fluidised Bed Columns: A Review. Int. Res. J. Environ. Sci. 2013, 2, 96–100. [Google Scholar]
- Hlihor, R.M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption Potential of Dead and Living Arthrobacter viscosus Biomass in the Removal of Cr(VI): Batch and Column Studies. Process Saf. Environ. Prot. 2017, 108, 44–56. [Google Scholar] [CrossRef]
- Ravikumar, K.V.; Sudakaran, S.V.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Removal of Hexavalent Chromium Using Nano Zero Valent Iron and Bacterial Consortium Immobilized Alginate Beads in a Continuous Flow Reactor. Environ. Technol. Innov. 2018, 12, 104–114. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Q.; Wu, G.; Gu, Q.; Wei, L. Cd-Resistant Strains of B. Cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water. PLoS ONE 2016, 11, e0151479. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. [Google Scholar]
- Sepehr, M.N.; Nasseri, S.; Zarrabi, M.; Samarghandi, M.R.; Amrane, A. Removal of Cr (III) from Tanning Effluent by Aspergillus niger in Airlift Bioreactor. Sep. Purif. Technol. 2012, 96, 256–262. [Google Scholar] [CrossRef]
- De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef]
- Migahed, F.; Abdelrazak, A.; Fawzy, G. Batch and Continuous Removal of Heavy Metals from Industrial Effluents Using Microbial Consortia. Int. J. Environ. Sci. Technol. 2017, 14, 1169–1180. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Recent Trends in Microbial Biosorption of Heavy Metals: A Review. Biochem. Mol. Biol. 2013, 1, 19. [Google Scholar] [CrossRef]
- Golnaraghi Ghomi, A.; Asasian-Kolur, N.; Sharifian, S.; Golnaraghi, A. Biosorpion for Sustainable Recovery of Precious Metals from Wastewater. J. Environ. Chem. Eng. 2020, 8, 103996. [Google Scholar] [CrossRef]
- DalCorso, G.; Manara, A.; Piasentin, S.; Furini, A. Nutrient Metal Elements in Plants. Metallomics 2014, 6, 1770–1788. [Google Scholar] [CrossRef]
- Zajáros, A.; Szita, K.; Matolcsy, K.; Horváth, D. Life Cycle Sustainability Assessment of DMSO Solvent Recovery from Hazardous Waste Water. Period. Polytech. Chem. Eng. 2017, 62, 305–309. [Google Scholar] [CrossRef]
- Petrillo, A.; De Felice, F.; Jannelli, E.; Autorino, C.; Minutillo, M.; Lavadera, A.L. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) Analysis Model for a Stand-Alone Hybrid Renewable Energy System. Renew. Energy 2016, 95, 337–355. [Google Scholar] [CrossRef]
- Mohammadi, A.; Khoshnevisan, B.; Venkatesh, G.; Eskandari, S. A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis. Processes 2020, 8, 1275. [Google Scholar] [CrossRef]
- Alifieris, O.; Katsourinis, D.; Giannopoulos, D.; Founti, M. Process Simulation and Life Cycle Assessment of Ceramic Pigment Production: A Case Study of Green Cr2O3. Processes 2021, 9, 1731. [Google Scholar] [CrossRef]
- Rodríguez, R.; Espada, J.J.; Gallardo, M.; Molina, R.; López-Muñoz, M.J. Life Cycle Assessment and Techno-Economic Evaluation of Alternatives for the Treatment of Wastewater in a Chrome-Plating Industry. J. Clean. Prod. 2018, 172, 2351–2362. [Google Scholar] [CrossRef]
- Szulc, P.; Kasprzak, J.; Dymaczewski, Z.; Kurczewski, P. Life Cycle Assessment of Municipal Wastewater Treatment Processes Regarding Energy Production from the Sludge Line. Energies 2021, 14, 356. [Google Scholar] [CrossRef]
- Polruang, S.; Sirivithayapakorn, S.; Prateep Na Talang, R. A Comparative Life Cycle Assessment of Municipal Wastewater Treatment Plants in Thailand under Variable Power Schemes and Effluent Management Programs. J. Clean. Prod. 2018, 172, 635–648. [Google Scholar] [CrossRef]
- Filote, C.; Hlihor, R.-M.; Simion, I.M.; Rosca, M. Life Cycle Assessment (LCA) Application for Heavy Metals Removal from Wastewaters Using Conventional and Microbial Sorbents. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18 November 2021; pp. 1–4. [Google Scholar]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Methodological Framework for Wastewater Treatment Plants Delivering Expanded Service: Economic Tradeoffs and Technological Decisions. Sci. Total Environ. 2022, 823, 153616. [Google Scholar] [CrossRef]
- Carletti, G.; Fatone, F.; Bolzonella, D.; Cecchi, F. Occurrence and Fate of Heavy Metals in Large Wastewater Treatment Plants Treating Municipal and Industrial Wastewaters. Water Sci. Technol. 2008, 57, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Grierson, S.; Strezov, V.; Bengtsson, J. Life Cycle Assessment of a Microalgae Biomass Cultivation, Bio-Oil Extraction and Pyrolysis Processing Regime. Algal Res. 2013, 2, 299–311. [Google Scholar] [CrossRef]
- Rosca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Filote, C.; Grecu, C.; Stoleru, V.; Gavrilescu, M. Scaling-Up Strategies of Heavy Metals Microbial Bioremediation. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18 November 2021; pp. 1–4. [Google Scholar]
- Bai, S.; Wang, X.; Huppes, G.; Zhao, X.; Ren, N. Using Site-Specific Life Cycle Assessment Methodology to Evaluate Chinese Wastewater Treatment Scenarios: A Comparative Study of Site-Generic and Site-Specific Methods. J. Clean. Prod. 2017, 144, 1–7. [Google Scholar] [CrossRef]
- Backes, J.G.; Traverso, M. Application of Life Cycle Sustainability Assessment in the Construction Sector: A Systematic Literature Review. Processes 2021, 9, 1248. [Google Scholar] [CrossRef]
- Simion, I.M.; Hlihor, R.M.; Rosca, M.; Filote, C.; Cozma, P. Sustainable Cost Indicators Used in Biosorption Process Applied for Heavy Metals Removal. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18 November 2021; pp. 1–4. [Google Scholar]
- Laratte, B.; Guillaume, B.; Kim, J.; Birregah, B. Modeling Cumulative Effects in Life Cycle Assessment: The Case of Fertilizer in Wheat Production Contributing to the Global Warming Potential. Sci. Total Environ. 2014, 481, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Shimako, A.H.; Tiruta-Barna, L.; Ahmadi, A. Operational Integration of Time Dependent Toxicity Impact Category in Dynamic LCA. Sci. Total Environ. 2017, 599–600, 806–819. [Google Scholar] [CrossRef]
- Guo, M.; Murphy, R.J. LCA Data Quality: Sensitivity and Uncertainty Analysis. Sci. Total Environ. 2012, 435–436, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Lueddeckens, S.; Saling, P.; Guenther, E. Temporal Issues in Life Cycle Assessment—A Systematic Review. Int. J. Life Cycle Assess. 2020, 25, 1385–1401. [Google Scholar] [CrossRef]
- Sohn, J.; Kalbar, P.; Goldstein, B.; Birkved, M. Defining Temporally Dynamic Life Cycle Assessment: A Review. Integr. Environ. Assess. Manag. 2020, 16, 314–323. [Google Scholar] [CrossRef]
- Levasseur, A.; Lesage, P.; Margni, M.; Deschênes, L.; Samson, R. Considering Time in LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Albers, A.; Hélias, A.; Tiruta-Barna, L.; Fantke, P.; Levasseur, A.; Benetto, E.; Benoist, A.; Collet, P. Addressing Temporal Considerations in Life Cycle Assessment. Sci. Total Environ. 2020, 743, 140700. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B. Global Warming Impact Assessment of a Crop Residue Gasification Project—A Dynamic LCA Perspective. Appl. Energy 2014, 122, 269–279. [Google Scholar] [CrossRef]
- Bisinella de Faria, A.B.; Spérandio, M.; Ahmadi, A.; Tiruta-Barna, L. Evaluation of New Alternatives in Wastewater Treatment Plants Based on Dynamic Modelling and Life Cycle Assessment (DM-LCA). Water Res. 2015, 84, 99–111. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Vázquez-Rowe, I.; Marín-Navarro, D.; Crujeiras, R.M.; Moreira, M.T.; Feijoo, G. Dynamic Environmental Efficiency Assessment for Wastewater Treatment Plants. Int. J. Life Cycle Assess. 2018, 23, 357–367. [Google Scholar] [CrossRef]
- Belyanovskaya, A.I.; Laratte, B.; Rajput, V.D.; Perry, N.; Baranovskaya, N.V. The Innovation of the Characterisation Factor Estimation for LCA in the USETOX Model. J. Clean. Prod. 2020, 270, 122432. [Google Scholar] [CrossRef]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What Exactly Is It about? A Proposal towards Using a Common Terminology and a Research Agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Zhang, Y.; Xie, K. Spatializing Environmental Footprint by Integrating Geographic Information System into Life Cycle Assessment: A Review and Practice Recommendations. J. Clean. Prod. 2021, 323, 129113. [Google Scholar] [CrossRef]
- Muazu, R.I.; Rothman, R.; Maltby, L. Integrating Life Cycle Assessment and Environmental Risk Assessment: A Critical Review. J. Clean. Prod. 2021, 293, 126120. [Google Scholar] [CrossRef]
- Niero, M.; Pizzol, M.; Bruun, H.G.; Thomsen, M. Comparative Life Cycle Assessment of Wastewater Treatment in Denmark Including Sensitivity and Uncertainty Analysis. J. Clean. Prod. 2014, 68, 25–35. [Google Scholar] [CrossRef]
Support | Immobilized Microorganism Specie | Metal Ion | Experimental Conditions | Performance | Ref. |
---|---|---|---|---|---|
Iron oxide magnetic nanoparticles | Bacillus licheniformis | Pb(II) | pH = 6, Ci = 200 mg/L, D = 0.7 g/L, t = 12 h, T = 30 °C | 98% 113.84 mg/g | [52] |
Synthesized titania | Saccharomyces cerevisiae | Cr(VI) | pH = 1, Ci = 100 mg/L, t = 82.5 min, T = 30 °C | 99.92% 162.07 mg/g | [54] |
Nanosilica | Aspergillus ustus, Fusarium verticillioides, Pencillium funiculosum | Cr(III) | pH = 7, Ci = 0.1 mol/L, D = 15 g/L, t = 30 min, T = 25 ± 1 °C | 128.26, 138.66, and 97.06 mg/g | [53] |
Cr(VI) | pH = 2, Ci = 0.1 mol/L, D = 15 g/L, t = 30 min, T = 25 ± 1°C | 336.24, 332.77 and 197.58 mg/g | |||
Silicon dioxide nano-powder | Aspergillus ustus | Cd(II) | pH = 7, Ci = 0.01 mol/L, D = 1.5 g/L, t = 30 min, T = 25 ± 1 °C | 112.41 mg/g | [73] |
Chitosan-coated magnetic nanoparticles | Saccharomyces cerevisiae | Cu(II) | pH = 4.5, Ci = 40–500 mg/L, D = 1.5 g/L, t = 2 h, T = 28 °C | 96.8%, 144.9 mg/g | [40] |
Zeolite NaY | Escherichia coli | Fe(III) | Ci = 6–99 mg/L, pH = 2.7–3.5, t = 10 days, T = 37 °C | 100% | [74] |
Ni(II) | pH = 5.7–6.2, Ci = 11–117 mg/L, t = 10 days, T = 37 °C | 82.5–85.5% | |||
Alginate | Arthrospira platensis (SAG257.80) | Pb(II) | pH = 4, Ci = 100 mg/L, D = 20 g/L, t = 24 h, T = 27 ± 1 °C | 65.91 mg/g | [48] |
Silica gel | pH = 5.5, Ci = 100 mg/L, D = 20 g/L, t = 24 h, T = 27 ± 1 °C | 2.68 mg/g | |||
Agarose | pH = 5, Ci = 100 mg/L, D = 20 g/L, t = 24 h, T = 27 ± 1 °C | 31.53 mg/g | |||
Ca-alginate | Scenedesmus quadricauda | Cu(II) | pH = 5.0, Ci = 600 mg/L, t = 120 min, T = 25 °C | 75.6 mg/g | [75] |
Zn(II) | 55.2 mg/g | ||||
Ni(II) | 30.4 mg/g | ||||
Biochar derived from rice straw | Bacillus cereus RC-1 | Cd(II) | pH = 7, Ci = 180 mg/L, D = 0.2 g/L, t = 24 h, T = 28 ± 2 °C | 158.77 mg/g | [67] |
Biochar derived from chicken manure | 110.14 mg/g | ||||
Biochar derived from sewage sludge | 127.71 mg/g | ||||
Sodium alginate | Sulfate-reducing bacteria | Fe(III) | pH = 7, Ci = 10 mg/L and 50 mg/L, t =120 h, T = 30 °C | 85–95% | [28] |
Zn(II) | 85–95% | ||||
Cd(II) | 85–95% | ||||
Pb(II) | 85–95% | ||||
Ni(II) | 75–95% | ||||
γ-Fe2O3 magnetic chitosan | Aspergillus sydowii | Cd(II) | Ci = 50 mg/L, D = 0,76 g/L, t = 24 h, T = 28 °C | 56.40 mg/g | [65] |
Agar beads | Pseudomonas putida | Cu(II) | pH = 4.3, Ci = 2 to 60 mg/L, D = 30 g/L, t = 4 h (for Cu(II)) and 6 h (for Zn(II)), T = 24 °C | 0.255 mg/g | [62] |
Zn(II) | 0.170 mg/g | ||||
Kaolin | Escherichia coli | Cr(VI) | pH = 5.0, Ci = 10–200 mg/L, D = 6.66 g/L, t = 24 h, T = 25 °C | 91 mg/g | [76] |
Zn(II) | 78 mg/g | ||||
Staphylococcus epidermidis | Cr(VI) | 56 mg/g | |||
Zn(II) | 49 mg/g | ||||
Alginate | Aspergillus niger | Th(IV) | pH = 6.0, Ci = 80–200 mg/L, D = 0.04 g/L, t = 480 min, T = 40 °C | 303.95 mg/g | [47] |
Ca-alginate | Chlorella vulgaris | Fe(II) | Ci = 30–300 mg/L; pH = 6.0, D = 0.4 g/L, t = 300 min, T = 25 °C | 129.83 mg/g | [46] |
Mn(II) | 115.90 mg/g | ||||
Zn (II) | 105.29 mg/g | ||||
Loofa sponge | Chlorella sorokiniana | Cr(III) | pH = 4.0, Ci = 10–300 mg/L, D = 0.4 g/L, t = 20 min, T = 25 ± 2 °C | 69.26 mg/g | [77] |
Magnetic chitosan beads | Saccharomyces cerevisiae | Sr(II) | pH = 6, Ci = 5–300 mg/L, D = 2 g/L, T = 30 °C | 36.97 mg/g | [64] |
Co(II) | 30.92 mg/g | ||||
Cs(I) | 16.67 mg/g | ||||
Magnetic Fe3O4− phthalate nanoparticles | Staphylococcus aureus | Pb(II) | pH = 5, Ci = 0.03–0.5 mmol/L, D = 1.5 g/L, t = 20 min, T = 25 °C | 100%, 280.75 mg/g | [78] |
Ni(II) | 97.5%, 57.81 mg/g | ||||
Cu(II) | 89.2%, 50.52 mg/g | ||||
Bio-carrier Beads (polysulfone matrix) | Bacillus drentensis LMG 21831T | Pb(II) | Ci = 0.01–100 mg/L, D = 40 g/L, t = 24 h, T = 20 °C | 0.3332 mg/g | [79] |
Cu(II) | 0.5598 mg/g | ||||
Ca-alginate | Bacillus cereus M116 | Ni(II) | pH = 6.0, Ci = 25–1000 mg/L, D = 3.8 mg/L, t = 200 min | 125 mg/g | [49] |
Textile made of 100% polyester | Aspergillus australensis | Cu(II) | pH = 5.5, Ci = 20 mg/L, t = 24 h, T = 35 °C | 34.46%, 2.46 mg/g | [63] |
Metal | Microalgae Species | Bioreactor Type | Optimal Conditions | Performance | Ref. |
---|---|---|---|---|---|
Cr(VI) | Scenedesmus quadricauda biochar | Fixed-bed column (100 mm height and 6.6 mm internal diameter) | Initial metal concentration (mg/L) = 5; pH= 2; Temperature (°C) = 22; Biosorbent dose (g) = 0,2; Flow rate (mL/min) = 2; Saturation time (min) = 810; | 57.58% | [84] |
13.10 mg/g | |||||
Spirulina platensis (calcium alginate beads) | Packed-bed column (35 cm height and 2 cm internal diameter) | Initial metal concentration (mg/L) = 100; pH = 1.5; Temperature (°C) = 30; Biosorbent dose (g) = 140 (9.5 g of S. platensis); Flow rate (L/h) = 3.5; | 99% | [50] | |
- | |||||
Pb(II) | Oscillatoria princeps (92%), Spirogyra aequinoctialis (3%), Oscillatoria subbrevis (2%), Oscillatoria formosa (1%), and other species (1%) | Fluidized bed system (1 m height and 7.5 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 4; Temperature (°C) = 20; Biosorbent dose (g) = 1; Flow rate (L/h) = 100; Bed height (cm) = 2.5; Particle size (mm) = 0.6–1; | - | [80] |
44.5 mg/g | |||||
Spirulina platensis (alginate beads, chitosan, respectively) | Packed-bed column (30 cm height and 2 cm inner diameter) | Initial metal concentration (mg/L) = 100; pH = 5–6; Temperature (°C) = 25; Biosorbent dose (g/L) = 1; Flow rate (mL/min) = 2; Beads size (mm) = 2; | - | [45] | |
621.6 mg/g, 124.32 mg/g, respectively | |||||
Cd(II) | Oscillatoria princeps (92%), Spirogyra aequinoctialis (3%), Oscillatoria subbrevis (2%), Oscillatoria formosa (1%), and other species (1%) | Fluidized bed system (1 m height and 7.5 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 4; Temperature (°C) = 20; Biosorbent dose (g) = 1; Flow rate (L/h) = 100; Bed height (cm) = 2,5; Beads size (mm) = 0.6–1; | - | [80] |
39.5 mg/g | |||||
Spirulina platensis (alginate beads, chitosan, respectively) | Packed-bed column (30 cm height and 2 cm inner diameter) | Initial metal concentration (mg/L) = 100; pH = 5–6; Temperature (°C) = 25; Biosorbent dose (g/L) = 1; Flow rate (mL/min) = 2; Beads size (mm) = 2; | - | [45] | |
213.58 mg/g, 89.93 mg/g, respectively | |||||
As(II) | Oscillatoria princeps (92%), Spirogyra aequinoctialis (3%), Oscillatoria subbrevis (2%), Oscillatoria formosa (1%), and other species (1%) | Fluidized bed system (1 m height and 7.5 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 4; Temperature (°C) = 20; Biosorbent dose (g) = 1; Flow rate (L/h) = 100; Bed height (cm) = 2,5; Beads size (mm) = 0.6–1; | - | [80] |
35 mg/g | |||||
Cu(II) | Oscillatoria princeps (92%), Spirogyra aequinoctialis (3%), Oscillatoria subbrevis (2%), Oscillatoria formosa (1%), and other species (1%) | Fluidized bed system (1 m height and 7.5 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 5; Temperature (°C) = 20; Biosorbent dose (g) = 1; Flow rate (L/h) = 100; Bed height (cm) = 2,5; Beads size (mm) = 0.6–1; | - | [80] |
41 mg/g | |||||
Spirulina platensis (alginate beads, chitosan, respectively) | Packed-bed column (30 cm height and 2 cm inner diameter) | Initial metal concentration (mg/L) = 100; pH = 5–6; Temperature (°C) = 25; Biosorbent dose (g/L) = 1; Flow rate (mL/min) = 2; Beads size (mm) = 2; | - | [45] | |
196.99 mg/g, 63.54 mg/g, respectively |
Metal | Bacteria Species | Bioreactor Type | Optimal Conditions | Performance | Ref. |
---|---|---|---|---|---|
Total Cr | Arthrobacter viscosus | Acrylic column (25 cm height and 3.2 cm inner diameter) | Initial metal concentration (mg/L) = 26; pH = 2; Room temperature; Flow rate (mL/min) = 10; Exhaustion time (min) = 350; Biofilm amount (g/L) = 5.75; | 100% | [85] |
20.37 mg/g | |||||
Microbial consortia immobilized beads (Bacillus subtilis, Acinetobacter junii, Escherichia coli) | Continuous flow reactor (30 cm height and 2.5 cm inner diameter) | Initial metal concentration (mg/L) = 10; pH = 7; Temperature (°C) = 37; Flow rate (mL/min) = 0.5; Saturation time (min) = 120; Bed height (cm) = 18; Particle size (mm) = 1–2; 5% bacterial consortium in a bead; | 51 ± 4.23% | [86] | |
224 ± 8.16 mg/g | |||||
Alginate beads loaded with Acinetobacter junii, Escherichia coli and Bacillus subtilis | Column (30 cm height and 1.5 cm inner diameter) | Initial metal concentration (mg/L) = 300; pH = 3; Temperature (°C) = 30; Flow rate (mL/min) = 3; Saturation time (min) = 105 Bed height (cm) = 20; Particle size (mm) = 1; 5% (w/v) bacterial consortium; | 23.94% | [30] | |
657 mg/g | |||||
Total Cr | Arthrobacter viscosus | Acrylic column (25 cm height and 3.2 cm inner diameter) | Initial metal concentration (mg/L) = 26; pH = 2; Room temperature; Flow rate (mL/min) = 10; Exhaustion time (min) = 350; Biofilm amount (g/L) = 5.75; | 42.4% | [85] |
20.37 mg/g | |||||
Pb(II) | Free, immobilized (respectively) Aeromonas hydrophila | Fixed-bed column (30 cm height and 2 cm inner diameter) | Initial metal concentration (mg/L) = 103.6; pH = 5; Temperature (°C) = 30; Flow rate = 2 mL/min; Saturation time (h) = 68.29; Bed height (cm) = 19; Particle size (mm) = 0.1; | 85.38% | [51] |
163.9, 138.88 mg/g (respectively) | |||||
Cd(II) | Alive Bacillus cereus (fixed with activated carbon from coconut husk) | Fixed-bed column (3.1 cm inner diameter) | Initial metal concentration (mg/L) = 15.2; pH = -; Room temperature; Flow rate (mL/min) = 7; Saturation time (h) = 40 Bed height (cm) = 21.5; Particle size (mm): -; | >80% | [87] |
- |
Metal | Fungi Species | Bioreactor Type | Optimal Conditions | Performance | Ref. |
---|---|---|---|---|---|
Cr(VI) | Aspergillus niger (alginate beads) | Column (4 cm inner diameter) | Initial metal concentration (mg/L) = 100; pH = 1.5; Temperature (°C) = -; Flow rate (mL/min) = 5; Saturation time (h) = 17; Bed height (cm) = 40; Beads size (mm): 3.2 mm ± 0.1 mm; 5% (w/v) biomass/bead. | - | [88] |
- | |||||
Trichoderma viride (sodium alginate beads) | Column (2.5 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 2.5; Temperature (°C) = -; Flow rate (mL/min) = 5; Equilibrium time (h) = 4.6; Saturation time (min) = 667.8; Bed height (cm) = 20; Particle size (mm) = 4; 5% (w/v) fungal biomass/bead; | - | [81] | |
6.88 ± 0.03 mg/g | |||||
Rhizopus arrhizus | Packed-bed column (10 cm height and 2.5 cm inner diameter) | Initial metal concentration (mg/L) = 199; pH = 1.3; Temperature (°C) = -; Flow rate (mL/min) = 0.8; Residence time (min) = 20; Bed height (cm) = 45; Beads size (mm) = 2.429; | 49.89% | [89] | |
52.11 mg/g | |||||
Cr(III) | Aspergillus niger | Airlift bioreactor (3 L volume) | Initial metal concentration (mg/L) =1000–1300; pH = 5.1; Temperature (°C) = 30; Ventilation (v/v) = 4; Contact time (h) = 32; | 96% | [90] |
208.70 mg/g | |||||
Pb(II) | Aspergillus caespitosus (immobilized glutaraldehyde cross-linked calcium alginate beads—AGCCAB beads) | Packed-bed column (35 cm length and 1.5 cm inner diameter) | Initial metal concentration (mg/L) = 600; pH = 5.5 ± 0.5; Temperature (°C) = -; Flow rate (mL/min) = 2.5; | - | [91] |
670 ± 2.5 mg/g | |||||
Saccharomyces cerevisiae | Double-draft airlift column (27.9 cm height and 7.6 cm inner diameter) | Initial metal concentration (mg/L) = 120; pH = 5; Temperature (°C) = 22; Biosorbent dose (g/L) = 3; Airflow (L/min) = 3; Mixing rate (rpm) = 200; | 78% | [16] | |
72.5 mg/g | |||||
Aspergillus niger and Aspergillus terreus | Fixed-bed column (30 cm height and 2 cm inner diameter) | Initial metal concentration (mg/L) = 250 mM; pH = -; Temperature (°C) = -; Flow rate (mL/min) = 3; Support height (cm) = 6; | 18–22%, 14–20%, respectively | [92] | |
- | |||||
Cd(II) | Phanerochaete chrysosporium (immobilized by growing onto polyurethane foam material) | Packed-bed column (33 cm height and 10 cm inner diameter) | Initial metal concentration (mg/L) = 11; pH = 5.3; Temperature (°C) = -; Flow rate (mL/min) = 125; 10% Breakthrough time (h) = 1.3; Bed height (cm) = 32.5; | 42.2% | [82] |
- | |||||
Cu(II) | Saccharomyces cerevisiae | Double-draft airlift column (27.9 cm height and 7.6 cm inner diameter) | Initial metal concentration (mg/L) = 50; pH = 5; Temperature (°C) = 22; Biosorbent dose (g/L) = 3; Airflow (L/min) = 3; Mixing rate (rpm) = 200; | 42% | [16] |
29.9 mg/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filote, C.; Roșca, M.; Simion, I.M.; Hlihor, R.M. Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes 2022, 10, 1758. https://doi.org/10.3390/pr10091758
Filote C, Roșca M, Simion IM, Hlihor RM. Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes. 2022; 10(9):1758. https://doi.org/10.3390/pr10091758
Chicago/Turabian StyleFilote, Cătălina, Mihaela Roșca, Isabela Maria Simion, and Raluca Maria Hlihor. 2022. "Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms" Processes 10, no. 9: 1758. https://doi.org/10.3390/pr10091758
APA StyleFilote, C., Roșca, M., Simion, I. M., & Hlihor, R. M. (2022). Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes, 10(9), 1758. https://doi.org/10.3390/pr10091758