Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Total Polyphenolic Content and Antioxidant Activity Assessment
2.2.1. Determination of Total Polyphenol Content
2.2.2. Determination of Antioxidant Capacity
2.2.3. Polyphenolic Profile
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenolic Content and Antioxidant Activity Assessment
3.2. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Craig, W.J. Nutrition Concerns and Health Effects of Vegetarian Diets. Nutr. Clin. Pract. 2010, 25, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Istudor, N.; Ion, R.A.; Petrescu, I.E. Research on Consumer’s Self-protection through a Health Diet. Amfiteatru Econ. 2010, 12, 436–443. [Google Scholar]
- Sadler, M.J. Meat alternatives- market developments and health benefits. Trends Food Sci. Technol. 2004, 15, 250–260. [Google Scholar] [CrossRef]
- Joshi, V.K.; Kumar, S. Meat analogues: Plant based alternatives to meat products: A review. Int. J. Food Ferment Technol. 2015, 5, 107–119. [Google Scholar] [CrossRef]
- Cavallini, V.; Hargarten, P.G.; Joehnke, J. Vegetable Protein Meat Analog. U.S. Patent 7070827, 4 July 2006. [Google Scholar]
- Crawford, E. Alternative Proteins Gain Popularity, but Long-Term Viability of Some Questioned. Available online: https://www.foodnavigator-usa.com/Article/2015/10/21/Alternative-proteins-gain-popularity-long-term-viability-questioned (accessed on 20 June 2022).
- Frewer, L.J. Consumer acceptance and rejection of emerging agrifood technologies and their applications. Eur. Rev. Agric. Econ. 2017, 44, 683–704. [Google Scholar] [CrossRef]
- Mancini, M.C.; Antonioli, F. Exploring consumers’ attitude towards cultured meat in Italy. Meat Sci. 2019, 150, 101–110. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-based meat analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: London, UK, 2019; pp. 103–126. [Google Scholar]
- Sucapane, D.; Roux, C.; Sobol, K. Exploring how product descriptors and packaging colors impact consumers’ perceptions of plant-based meat alternative products. Appetite 2021, 167, 105590. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Cornet, S.H.; Snel, S.J.; Lesschen, J.; van der Goot, A.J.; van der Sman, R.G. Enhancing the water holding capacity of model meat analogues through marinade composition. J. Food Eng. 2021, 290, 110283. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Dominguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Tomović, V.; Šojić, B.; Savanović, J.; Kocić-Tanackov, S.; Pavlić, B.; Jokanović, M.; Vujadinović, D. New formulation towards healthier meat products: Juniperus communis L. essential oil as an alternative for sodium nitrite in dry fermented sausages. Foods 2020, 9, 1066. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.R.; Akhlaq Brinto, H.; Chakrabortty, P.; Ara Begum, A. Processing and nutrient quality evaluation of defatted soy meat. Integr. Food Nutr. Metab. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, P.C.; Collins, A.R.; Duthie, G.G. Antioxidant Efficacy of Phytoestrogens in Chemical and Biological Model Systems. Arch. Biochem. Biophys. 1998, 360, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar] [CrossRef]
- Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother. 2016, 82, 379–392. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Schlangen, M.; Kyriakopoulou, K.; Boom, R.M.; van der Goot, A.J. Texture methods for evaluating meat and meat analogue structures: A review. Food Control 2021, 127, 108103. [Google Scholar] [CrossRef]
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Aguero, M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-FOOD Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Sivarooban, T.; Hettiarachchy, N.S.; Johnson, M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008, 41, 781–785. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Gomez-Estaca, J.; Bravo, L.; Gomez-Guillen, M.C.; Aleman, A.; Montero, P. Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem. 2009, 112, 18–25. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.M.; Sivendiran, T.; Bohrer, B.M. Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 2018, 58, 2673–2678. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Joye, I. Protein digestibility of cereal products. Foods 2019, 8, 199. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol. Med. 1995, 20, 933–956. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef]
- Rizzo, G. The Antioxidant Role of Soy and Soy Foods in Human Health. Antioxidants 2020, 9, 635. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat Antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Theander, O.; Lingnert, H. Avenanthramides—Group of phenolic antioxidants in oats. Cereal Chem. 1993, 70, 637–641. [Google Scholar]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of Antioxidant Activity by Using Different In Vitro Methods. Free Radic Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Marc, R.A.; Mureșan, V.; Mureșan, A.E.; Mureșan, C.C.; Tanislav, A.E.; Pușcas, A.; Marţis, G.S.; Ungur, R.A. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants 2022, 11, 960. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- Sun, C.X.; Ge, J.; He, J.; Gan, R.Y.; Fang, Y.P. Processing, Quality, Safety, and Acceptance of Meat Analogue Products. Engineering 2021, 7, 674–678. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Lusk, J.L. Consumer preferences for farm-raised meat, lab-grown meat, and plant-based meat alternatives: Does information or brand matter? Food Policy 2020, 95, 101931. [Google Scholar] [CrossRef]
- Flores, M.; Piornos, J.A. Fermented meat sausages and the challenge of their plant-based alternatives: A comparative review on aroma-related aspects. Meat Sci. 2021, 182, 108636. [Google Scholar] [CrossRef] [PubMed]
- Belleggia, L.; Milanović, V.; Ferrocino, I.; Cocolin, L.; Haouet, M.N.; Scuota, S.; Maolonia, L.; Garofaloa, C.; Cardinalia, F.; Aquilanti, L.; et al. Is there any still undisclosed biodiversity in Ciauscolo salami? A new glance into the microbiota of an artisan production as revealed by high-throughput sequencing. Meat Sci. 2020, 165, 108128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, L.; Swanson, B.G. Functionality of Protein-Fortified Extrudates. CRFSFS 2013, 12, 546–564. [Google Scholar] [CrossRef] [PubMed]
- Banovic, M.; Sveinsdottir, K. Importance of being analogue: Female attitudes towards meat analogue containing rapeseed protein. Food Control 2021, 123, 107833. [Google Scholar] [CrossRef]
- Cliceri, D.; Spinelli, S.; Dinnella, C.; Prescott, J.; Monteleone, E. The influence of psychological traits, beliefs and taste responsiveness on implicit attitudes toward plant- and animal-based dishes among vegetarians, flexitarians and omnivores. Food Qual Prefer. 2018, 68, 276–291. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef]
- Ettinger, L.; Falkeisen, A.; Knowles, S.; Gorman, M.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception and Acceptability of Plant-Based Alternatives to Chicken. Foods 2022, 11, 2271. [Google Scholar] [CrossRef]
Types | Nutritional Values per 100 g | Ingredients | ||||
---|---|---|---|---|---|---|
Protein | Carbohydrates | Fat | Salt | Fibres | ||
Minced meat | 18.2 | 0.15 including sugars 0.01 | 14.2 including saturated fatty acids 7.38 | 1.55 | beef (94.5%), water, salt, stabilizer-sodium acetate | |
Minced meat (meat analogue product) | 17.3 | 3.6 including sugars 1.0 | 7.9 including saturated fatty acids 2.9 | 1.0 | 5.0 | soy protein (22.9%), vegetable oils (rapeseed, coconut), stabilizer (methylcellulose), natural aromas, fermented alcohol vinegar, garlic and onion powder, fruit and vegetable concentrates (beets, carrots, peppers, blackcurrants), malted barley extract, black pepper |
Burger | 20.0 | 0 including sugars 0 | 9.6 including saturated fatty acids 4.0 | 1.1 | beef (99%), salt | |
Burger (meat analogue product) | 17.3 | 2.8 including sugars 0.5 | 13.0 including saturated fatty acids 3.6 | 0.73 | 6.0 | soy protein (19.9%), vegetable oils, rapeseed, coconut, fermented alcohol vinegar, aromas, stabilizer (E461–Methylcellulose), plant concentrates (apple, beet, carrot, hibiscus), malted barley extract |
Steak | pork (20%), breadcrumbs, egg, flour, milk, salt, rapeseed oil, butter | |||||
Steak (meat analogue products) | 16.0 | 16.0 including sugars 2.4 | 12.0 including saturated fatty acids 1.3 | 1.3 | 5.5 | breadcrumbs (16.4%) (wheat flour, water, rapeseed oil, yeast, salt, spice extracts: sweet pepper, turmeric), vegetable oils in various proportions (rapeseed, sunflower), wheat protein (5.8%), soy protein (5.5%), dried egg proteins, mayonnaise (sunflower oil, fermented alcohol vinegar, dried egg yolks, mustard, iodized table salt: table salt, potassium iodate; sugar), corn starch, citrus fibre, fermented alcohol vinegar, dried yeast extract, wheat flour, spice mix (sweet pepper, cumin, chili pepper, oregano), onion powder, tomato concentrate, salt, garlic, garlic powder |
Hungarian sausage | 22.0 | <0.5 including sugars <0.5 | 42.0 including saturated fatty acids 17.0 | 3.7 | pork, lard, salt, spices, ground hot pepper (1.2%), sweet ground pepper (1.0%), spice extract, color (E160c), sugar, preservative (E250, E202), smoke; stuffed into edible pork intestine. | |
Hungarian sausage (meat analogue products) | 9.6 | 12.48 including sugars 1.52 | 7.2 including saturated fatty acids 1.32 | 2.03 | wheat, soy, ground barley, oatmeal, sunflower oil, garlic, ground pepper, salt, spices | |
Frankfurters sausage | 13.2 | 2.2 including sugars 1.7 | 23.3 including saturated fatty acids 8.2 | 2.7 | pork (83%), water, salt, glucose, stabilizers (diphosphates, sodium citrates), aromas, spices, spice extracts, antioxidant (sodium erythorbate), preservative (sodium nitrite) | |
Frankfurters sausage (meat analogue products) | 18.0 | 4.9 including sugars 1.0 | 10 including saturated fatty acids 0.9 | 1.9 | 0.7 | soya protein (10.86%), rapeseed oil, wheat protein (7.28%), modified starch (E1422), salt, aromas, thickener- carrageenan (E407), ground red pepper, colorant- iron oxides and hydroxides (E172), smoky aroma |
Salami | 10.7 | 5.2 including sugars <0.3 | 14.7 including saturated fatty acids 6.2 | 2.4 | 0.7 | pork (28%), water, pork skin, beef (12%), lard, potato starch, salt, pork protein, stabilizers (E250, E450 and E451), modified starch (E1422), thickeners (E407a, E415 and E412), emulsifier (E471), antioxidants (E301 and E330), acidity regulators E500, vegetable fibre, flavour enhancers (E621 and E635), color (E120, E150c, E162), spices, garlic, spice extracts |
Salami (meat analogue products) | 17.0 | 5.1 including sugars 1.3 | 6.9 including saturated fatty acids 0.6 | 1.9 | 2.1 | soy protein (9%), textured soy protein (7%), rapeseed oil, wheat protein (5%), modified corn starch, salt, thickeners: carrageenan and spices, powdered vinegar, barley sweet extract, color E172 |
Sample Types | Polyphenols mg Gallic acid/g | DPPH (%) | CUPRAC Trolox mmol/kg | FRAP mmol/g | ABTS (%) |
---|---|---|---|---|---|
minced meat analogue | 1.24 ± 0.01 a | 10.40 ± 0.34 a | 8.17 ± 0.39 a | 7.42 ± 0.38 a | 6.28 ± 0.16 a |
minced meat | 0.69 ± 0.01 b | 7.50 ± 0.66 b | 1.71 ± 0.27 b | 3.79 ± 0.06 b | 2.10 ± 0.21 b |
burger analogue | 0.83 ± 0.01 a | 15.07 ± 1.81 a | 7.07 ± 0.17 a | 4.21 ± 0.15 | 6.53 ± 0.26 |
burger | 0.46 ± 0.01 b | 3.74 ± 3.28 b | 1.44 ± 0.08 b | 0.00 ± 0.00 | 6.39 ± 0.28 |
steak analogue | 1.33 ± 0.04 a | 0.00 ± 0.00 | 7.37 ± 0.88 a | 5.59 ± 0.05 a | 6.61 ± 0.52 a |
steak | 0.87 ± 0.03 b | 0.88 ± 0.52 | 5.11 ± 0.21 b | 4.30 ± 0.14 b | 4.93 ± 0.38 b |
Hungarian sausage analogue | 1.85 ± 0.05 a | 41.80 ± 0.45 a | 9.21 ± 0.23 a | 7.51 ± 0.40 a | 7.45 ± 0.43 a |
Hungarian sausage | 1.27 ± 0.11 b | 36.40 ± 4.19 b | 6.05 ± 0.46 b | 4.82 ± 0.18 b | 3.59 ± 0.12 b |
Frankfurter sausage analogue | 1.48 ± 0.02 a | 21.17 ± 1.85 a | 6.11 ± 0.36 a | 5.37 ± 0.22 a | 5.30 ± 0.21 a |
Frankfurter sausage | 0.81 ± 0.10 b | 17.20 ± 3.61 b | 2.62 ± 0.11 b | 3.62 ± 0.08 b | 4.96 ± 0.11 b |
salami analogue | 1.15 ± 0.06 a | 29.71 ± 1.96 a | 5.65 ± 0.32 a | 6.03 ± 0.03 a | 5.61 ± 0.31 a |
salami | 0.58 ± 0.06 b | 1.09 ± 1.94 b | 2.30 ± 0.12 b | 3.46 ± 0.04 b | 4.16 ± 0.25 b |
Parameters | Minced Meat | Minced Meat Analogue | Burger | Burger Analogue | Steak | Steak Analogue |
---|---|---|---|---|---|---|
Texture | 77.5 ± 34.3 | 76.6 ± 34.2 | 94 ± 8 | 75.5 ± 35.5 | 77.4 ± 19.6 | 87.4 ± 24 |
Product similarity | 21.6 ± 22 | 21.1 ± 20.3 | 27.4 ± 23.7 | 27.9 ± 24.4 | 90.9 ± 14.5 | 85.7 ± 24 |
Overall appearance | 41.8 ± 32.9 a | 73.3 ± 28.5 b | 78.2 ± 26.4 | 76.7 ± 24 | 85.1 ± 16.2 | 72.8 ± 26 |
Overall impression | 45.4 ± 23.8 | 62.5 ± 28 | 67.2 ± 27.3 | 61 ± 25.5 | 79.4 ± 19.5 | 67.9 ± 33.2 |
Interest in the product | 44.5 ± 32 | 51.2 ± 23.6 | 53.2 ± 31.8 | 47.6 ± 34.4 | 23.3 ± 24.7 | 23.2 ± 23.7 |
Preferences (%) | 40 | 60 | 90 | 10 | 50 | 50 |
Cut appearance | - | - | 75.2 ± 26.3 | 62.6 ± 33 | 82.4 ± 17.6 | 81 ± 19.7 |
Aroma | 64.1 ± 27.8 * | 62 ± 34.4 * | 75.9 ± 18.6 * | 53.7 ± 37.1 * | 94.4 ± 14.4 a* | 68.5 ± 29.6 b* |
Animal character | 75.2 ± 33 a* | 25 ± 34.2 b* | 82.7 ± 28 a* | 38.5 ± 37.3 b* | 99.2 ± 2.2 a* | 23.4 ± 35.2 b* |
Taste | 65 ± 31.2 * | 53.4 ± 36.9 * | 70.8 ± 24.2 * | 50.8 ± 31.5 * | 95.4 ± 12.2 * | 74 ± 34.6 * |
Meat taste | 70.6 ± 28.4 * | 43.1 ± 36.7 * | 80.6 ± 18.8 a* | 47.3 ± 35.6 b* | 94.4 ± 11.2 a* | 29.2 ± 34.1 b* |
Parameters | Hungarian Sausage | Hungarian Sausage Analogue | Frankfurter Sausage | Frankfurter Sausage Analogue | Salami | Salami Analogue |
---|---|---|---|---|---|---|
Texture | 96 ± 5.7 a | 58.6 ± 31.9 b | 86 ± 19.3 | 67.6 ± 30.2 | 79.4 ± 26.9 | 72.1 ± 31.4 |
Product similarity | 15 ± 18.6 | 13.4 ± 18 | 30.4 ± 25.3 | 31.6 ± 27.7 | 36.8 ± 19 | 36.7 ± 16.6 |
Overall appearance | 95.3 ± 9.3 | 79.5 ± 26.3 | 96.7 ± 6.4 | 85.8 ± 19.2 | 63.5 ± 16.8 a | 39 ± 23.5 b |
Overall impression | 92 ± 10.3 a | 55.3 ± 23.9 b | 74.7 ± 22.6 | 56.2 ± 23.7 | 74.3 ± 17.9 a | 52 ± 20.5 b |
Interest in the product | 83.7 ± 21.2 a | 23.6 ± 22.3 b | 64 ± 21 | 49.6 ± 22.2 | 54.6 ± 29.5 a | 20.9 ± 21.8 b |
Preferences (%) | 100 | 0 | 75 | 25 | 100 | 0 |
Cut appearance | 93.3 ± 10.9 a | 52.7 ± 37.6 b | 84.4 ± 19.3 | 86.3 ± 20.3 | 86.5 ± 16.3 a | 40.5 ± 23 b |
Aroma | 89.2 ± 19.7 a | 48.2 ± 31.5 b | 89.4 ± 23.3 a* | 39.1 ± 31.8 b* | 90.4 ± 15.2 a | 52.5 ± 35.1 b |
Animal character | 97.2 ± 5.4 a | 13.4 ± 31.6 b | 93.2 ± 17.2 a* | 7.2 ± 10.2 b* | 91 ± 13 a | 12.2 ± 21.5 b |
Taste | 94.1 ± 15.2 a | 43 ± 29.4 b | 89 ± 18.4 a* | 25.5 ± 28.6 b* | 78.1 ± 21.3 a | 39.8 ± 29.1 b |
Meat taste | 91.3 ± 13.3 a | 16.1 ± 20 b | 79.6 ± 18 a* | 14.9 ± 18.4 b* | 69.8 ± 15.2 a | 26.7 ± 24.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, F.A.A.; Dordevic, D.; Kabourkova, E.; Zemancová, J.; Dordevic, S. Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes 2022, 10, 1864. https://doi.org/10.3390/pr10091864
Abdullah FAA, Dordevic D, Kabourkova E, Zemancová J, Dordevic S. Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes. 2022; 10(9):1864. https://doi.org/10.3390/pr10091864
Chicago/Turabian StyleAbdullah, Fouad Ali Abdullah, Dani Dordevic, Eliska Kabourkova, Johana Zemancová, and Simona Dordevic. 2022. "Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products" Processes 10, no. 9: 1864. https://doi.org/10.3390/pr10091864
APA StyleAbdullah, F. A. A., Dordevic, D., Kabourkova, E., Zemancová, J., & Dordevic, S. (2022). Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes, 10(9), 1864. https://doi.org/10.3390/pr10091864