Synthesis, Characterization, and Antibacterial Potential of Poly(o-anisidine)/BaSO4 Nanocomposites with Enhanced Electrical Conductivity
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Poly(o-anisidine)
2.2. Preparation of Barium-Sulfate Nanoparticles
2.3. Synthesis of Poly(o-anisidine)/BaSO4 Nanocomposite
2.4. Characterization
2.4.1. FTIR Spectroscopic Studies
2.4.2. UV-Visible Spectroscopy
2.4.3. TEM Analysis
2.4.4. Conductivity Measurement
2.4.5. Antibacterial Activity
3. Results and Discussion
3.1. FTIR Spectroscopic Studies
3.2. UV-Visible Spectroscopy
3.3. TEM Analysis
3.4. Conductivity Test
3.5. Disc-Diffusion Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sebastian, J.; Samuel, J.M. Recent advances in the applications of substituted polyanilines and their blends and composites. Polym. Bull. 2019, 77, 6641–6669. [Google Scholar] [CrossRef]
- Thakur, S.; Patil, P. Enhanced LPG sensing-performance at room temperature of poly(o-anisidine)–CeO2 nanocomposites. RSC Adv. 2016, 6, 45768–45782. [Google Scholar] [CrossRef]
- Bonakdar, M.; Hosseini, S.R.; Ghasemi, S. Poly(o-Anisidine)/carbon nanotubes/graphene nanocomposite as a novel and cost-effective supercapacitor material. Mater. Sci. Eng. B 2021, 267, 115099. [Google Scholar] [CrossRef]
- Alijani, H.; Abdouss, M.; Khataei, H. Efficient photocatalytic degradation of toxic dyes over BiFeO3/CdS/rGO nanocomposite under visible light irradiation. Diam. Relat. Mater. 2022, 122, 108817. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Nadeem, S.; Javed, M.; Iqbal, S.; Khan, M.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; Mohyuddin, A. Photocatalytic Degradation of Yellow-50 Using Zno/Polyorthoethylaniline Nanocomposites. JOM 2022, 74, 2106–2112. [Google Scholar] [CrossRef]
- Rajkumar, R.; Vedhi, C. Preparation, characterization and anticorrosion behavior of Poly(o-anisidine)-SiO2 nanocomposites on mild steel. Mater. Today Proc. 2022, 48, 169–173. [Google Scholar] [CrossRef]
- Sangjan, S.; Wisasa, K.; Deddeaw, N. Enhanced photodegradation of reactive blue dye using Ga and Gd as catalyst in reduced graphene oxide-based TiO2 composites. Mater. Today Proc. 2019, 6, 19–23. [Google Scholar] [CrossRef]
- De Alvarenga, G.; Hryniewicz, B.M.; Jasper, I.; Silva, R.J.; Klobukoski, V.; Costa, F.S.; Cervantes, T.N.M.; Amaral, C.D.B.; Schneider, J.T.; Bach-Toledo, L.; et al. Recent trends of micro and nanostructured conducting polymers in health and environmental applications. J. Electroanal. Chem. 2020, 879, 114754. [Google Scholar] [CrossRef]
- Pandian, P.; Kalimuthu, R.; Arumugam, S.; Kannaiyan, P. Solid phase mechanochemical synthesis of Poly(o-anisidine) protected Silver nanoparticles for electrochemical dopamine sensor. Mater. Today Commun. 2021, 26, 102191. [Google Scholar] [CrossRef]
- Jadoun, S.; Riaz, U.; Yáñez, J.; Pal Singh Chauhan, N. Synthesis, characterization and potential applications of Poly(o-phenylenediamine) based copolymers and Nanocomposites: A comprehensive review. Eur. Polym. J. 2021, 156, 110600. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Klym, H.; Piskunov, S.; Popov, A.A.; Chalyy, D.; Zhydenko, I.; Lukashevych, D. The impact of temperature on electrical properties of polymer-based nanocomposites. Low Temp. Phys. 2020, 46, 1231–1234. [Google Scholar] [CrossRef]
- Aksimentyeva, O.I.; Savchyn, V.P.; Dyakonov, V.P.; Piechota, S.; Horbenko, Y.Y.; Opainych, I.Y.; Demchenko, P.Y.; Popov, A.; Szymczak, H. Modification of Polymer-Magnetic Nanoparticles by Luminescent and Conducting Substances. Mol. Cryst. Liq. Cryst. 2014, 590, 35–42. [Google Scholar] [CrossRef]
- Tsebriienko, T.; Popov, A.I. Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks. Crystals 2021, 11, 794. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Hussain, A.; Anjum, M.N.; Hussain, T.; Mujahid, A.; Khan, M.H.; Ahmed, T. Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water. Open Chem. 2020, 18, 843–849. [Google Scholar] [CrossRef]
- Akyüz, D. rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt. Mater. 2021, 116, 111090. [Google Scholar] [CrossRef]
- Landa, R.A.; Calvino, J.J.; López-Haro, M.; Antonel, P.S. Nanostructure, compositional and magnetic studies of Poly(aniline)–CoFe2O4 nanocomposites. Nano-Struct. Nano-Objects 2021, 28, 100808. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Rafique, F.; Nawaz, F.; Farooq, T.; Anjum, M.N.; Hussain, T.; Hassan, S.; Batool, M.; Khalid, H.; Shehzad, K. Synthesis of antibacterial poly (o-chloroaniline)/chromium hybrid composites with enhanced electrical conductivity. Chem. Cent. J. 2018, 12, 46. [Google Scholar] [CrossRef]
- Nadeem, S.; Iqbal, S.; Javed, M.; Ahmad, M.N.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; Ibrar, A.; Mohyuddin, A.; Haroon, S.M. Kinetic and Isothermal Studies on the Adsorptive Removal of Direct Yellow 12 Dye from Wastewater Using Propionic Acid Treated Bagasse. Chem. Sel. 2021, 6, 12146–12152. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Saeed, A.; Zhou, K.; Shoaib, M.; Waqas, M. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery. J. Colloid Interface Sci. 2017, 502, 16–23. [Google Scholar] [CrossRef]
- Bahadur, A.; Iqbal, S.; Shoaib, M.; Saeed, A.J.D.T. Electrochemical study of specially designed graphene-Fe 3 O 4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalton Trans. 2018, 47, 15031–15037. [Google Scholar] [CrossRef]
- Iqbal, S.; Nadeem, S.; Bahadur, A.; Javed, M.; Ahmad, Z.; Ahmad, M.N.; Shoaib, M.; Liu, G.; Mohyuddin, A.; Raheel, M. The effect of Ni-doped ZnO NPs on the antibacterial activity and degradation rate of polyacrylic acid-modified starch nanocomposite. Jom 2021, 73, 380–386. [Google Scholar] [CrossRef]
- Lv, X.; Li, J.; Xu, L.; Zhu, X.; Tameev, A.; Nekrasov, A.; Kim, G.; Xu, H.; Zhang, C. Colorless to Multicolored, Fast Switching, and Highly Stable Electrochromic Devices Based on Thermally Cross-Linking Copolymer. ACS Appl. Mater. Interfaces 2021, 13, 41826–41835. [Google Scholar] [CrossRef] [PubMed]
- Zaera, F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem. Rev. 2022, 122, 8594–8757. [Google Scholar] [CrossRef]
- Wu, H.; Lin, S.; Chen, C.; Liang, W.; Liu, X.; Yang, H. A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull. 2016, 83, 434–441. [Google Scholar] [CrossRef]
- Boutaleb, N.; Chouli, F.; Benyoucef, A.; Zeggai, F.Z.; Bachari, K. A comparative study on surfactant cetyltrimethylammoniumbromide modified clay-based poly(p-anisidine) nanocomposites: Synthesis, characterization, optical and electrochemical properties. Polym. Compos. 2021, 42, 1648–1658. [Google Scholar] [CrossRef]
- Peng, T.; Xiao, R.; Rong, Z.; Liu, H.; Hu, Q.; Wang, S.; Li, X.; Zhang, J. Polymer Nanocomposite-based Coatings for Corrosion Protection. Chem. Asian J. 2020, 15, 3915–3941. [Google Scholar] [CrossRef] [PubMed]
- Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Mamba, B.B.; Nkambule, T.T.I.; Sherif, E.-S.M.; Ebenso, E.E. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. Nano Sel. 2020, 1, 561–611. [Google Scholar] [CrossRef]
- Bahadur, A.; Saeed, A.; Shoaib, M.; Iqbal, S.; Anwer, S.J.J.o.A.P.S. Modulating the burst drug release effect of waterborne polyurethane matrix by modifying with polymethylmethacrylate. J. Appl. Polym. Sci. 2019, 136, 47253. [Google Scholar] [CrossRef]
- Nadeem Ahmad, M.; Anjum, M.N.; Nawaz, F.; Iqbal, S.; Saif, M.J.; Hussain, T.; Mujahid, A.; Farooq, M.U.; Nadeem, M.; Rahman, A. Synthesis and antibacterial potential of hybrid nanocomposites based on polyorthochloroaniline/copper nanofiller. Polym. Compos. 2018, 39, 4524–4531. [Google Scholar] [CrossRef]
- Hussain, T.; Jabeen, S.; Shehzad, K.; Mujahid, A.; Ahmad, M.N.; Farooqi, Z.H.; Raza, M.H. Polyaniline/silver decorated-MWCNT composites with enhanced electrical and thermal properties. Polym. Compos. 2018, 39, E1346–E1353. [Google Scholar] [CrossRef]
- Merangmenla; Nayak, B.; Baruah, S.; Puzari, A. 1D copper (II) based coordination polymer/PANI composite fabrication for enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. 2022, 427, 113803. [Google Scholar] [CrossRef]
- Potle, V.D.; Shirsath, S.R.; Bhanvase, B.A.; Saharan, V.K. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye. Optik 2020, 208, 164555. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmad, M.N.; Jalal, F.; Yameen, M.; Falak, S.; Noreen, S.; Naz, S.; Nazir, A.; Iftikhar, S.; Soomro, G.A. Investigating the Antibacterial Activity of POMA Nanocomposites. Pol. J. Environ. Stud. 2019, 28, 4191–4198. [Google Scholar] [CrossRef]
- Hussain, T.; Ahmad, M.N.; Nawaz, A.; Mujahid, A.; Bashir, F.; Mustafa, G. Surfactant incorporated Co nanoparticles polymer composites with uniform dispersion and double percolation. J. Chem. 2017, 2017, 7191590. [Google Scholar] [CrossRef]
- Monga, D.; Basu, S. Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2. Adv. Powder Technol. 2019, 30, 1089–1098. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Yao, P.; Ruan, X. Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739. [Google Scholar] [CrossRef]
- Li, M.; Mann, S. Emergence of Morphological Complexity in BaSO4 Fibers Synthesized in AOT Microemulsions. Langmuir 2000, 16, 7088–7094. [Google Scholar] [CrossRef]
- Atone, M.S.; Dhoble, S.J.; Moharil, S.V.; Dhopte, S.M.; Muthal, P.L.; Kondawar, V.K. Luminescence in BaSO4. Eu Radiat. Eff. Defects Solids 1993, 127, 225–230. [Google Scholar] [CrossRef]
- Cui, W.; Chen, L.; Li, J.; Zhou, Y.; Sun, Y.; Jiang, G.; Lee, S.; Dong, F. Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4. Appl. Catal. B: Environ. 2019, 253, 293–299. [Google Scholar] [CrossRef]
- Ugur, N.; Bilici, Z.; Ocakoglu, K.; Dizge, N. Synthesis and characterization of composite catalysts comprised of ZnO/MoS2/rGO for photocatalytic decolorization of BR 18 dye. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 126945. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, H.; Zhu, S. Precipitation of barium sulfate nanoparticles via impinging streams. Mater. Lett. 2007, 61, 168–170. [Google Scholar] [CrossRef]
- Birhan, D.; Tekin, D.; Kiziltas, H. Thermal, photocatalytic, and antibacterial properties of rGO/TiO2/PVA and rGO/TiO2/PEG composites. Polym. Bull. 2021, 79, 2585–2602. [Google Scholar] [CrossRef]
- Aninwene, G.E.; Stout, D.; Yang, Z.; Webster, J.T. Nano-BaSO4: A novel antimicrobial additive to pellethane. Int. J. Nanomed. 2013, 8, 1197–1205. [Google Scholar]
- Ahmad, M.N.; Nadeem, S.; Hassan, S.U.; Jamil, S.; Javed, M.; Mohyuddin, A.; Raza, H. UV/VIS absorption properties of metal sulphate polymer nanocomposites. Dig. J. Nanomater. Biostructures 2021, 16, 1557–1563. [Google Scholar]
Sr. No. | o-anisidine Monomer | BaSO4 NPs | % of BaSO4 NPs |
---|---|---|---|
1 | 0.246 g | 0 g | 0% |
2 | 0.246 g | 0.0024 g | 1% |
3 | 0.246 g | 0.0073 g | 3% |
4 | 0.246 g | 0.0123 g | 5% |
5 | 0.246 g | 0.0172 g | 7% |
6 | 0.246 g | 0.0246 g | 10% |
Sr. No. | Sample Name | % BaSO4 NPs | Temperature (°C) | Conductivity (S/cm) |
---|---|---|---|---|
1 | Poly(o-anisidine) | 0% | 25 °C | 1080 |
2 | POA/BaSO4 | 1% | 25 °C | 992 |
3 | POA/BaSO4 | 3% | 25 °C | 919 |
4 | POA/BaSO4 | 5% | 25 °C | 843 |
5 | POA/BaSO4 | 7% | 25 °C | 784 |
6 | POA/BaSO4 | 10% | 25 °C | 578 |
Sample No. | Nanocomposite Concentrations (% w/w) | Inhibition Zone Diameter (mm) of Staphylococcus aureus | Inhibition Zone Diameter (mm) of Pseudomonas aeruginosa |
---|---|---|---|
1 | 1 | - | - |
2 | 3 | - | - |
3 | 5 | 0.6 | 0.5 |
4 | 7 | 0.8 | 0.8 |
5 | 10 | 0.9 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.N.; Nadeem, S.; Soltane, R.; Javed, M.; Iqbal, S.; Kanwal, Z.; Farid, M.F.; Rabea, S.; Elkaeed, E.B.; Aljazzar, S.O.; et al. Synthesis, Characterization, and Antibacterial Potential of Poly(o-anisidine)/BaSO4 Nanocomposites with Enhanced Electrical Conductivity. Processes 2022, 10, 1878. https://doi.org/10.3390/pr10091878
Ahmad MN, Nadeem S, Soltane R, Javed M, Iqbal S, Kanwal Z, Farid MF, Rabea S, Elkaeed EB, Aljazzar SO, et al. Synthesis, Characterization, and Antibacterial Potential of Poly(o-anisidine)/BaSO4 Nanocomposites with Enhanced Electrical Conductivity. Processes. 2022; 10(9):1878. https://doi.org/10.3390/pr10091878
Chicago/Turabian StyleAhmad, Mirza Nadeem, Sohail Nadeem, Raya Soltane, Mohsin Javed, Shahid Iqbal, Zunaira Kanwal, Muhammad Fayyaz Farid, Sameh Rabea, Eslam B. Elkaeed, Samar O. Aljazzar, and et al. 2022. "Synthesis, Characterization, and Antibacterial Potential of Poly(o-anisidine)/BaSO4 Nanocomposites with Enhanced Electrical Conductivity" Processes 10, no. 9: 1878. https://doi.org/10.3390/pr10091878
APA StyleAhmad, M. N., Nadeem, S., Soltane, R., Javed, M., Iqbal, S., Kanwal, Z., Farid, M. F., Rabea, S., Elkaeed, E. B., Aljazzar, S. O., Alrbyawi, H., & Elkhatib, W. F. (2022). Synthesis, Characterization, and Antibacterial Potential of Poly(o-anisidine)/BaSO4 Nanocomposites with Enhanced Electrical Conductivity. Processes, 10(9), 1878. https://doi.org/10.3390/pr10091878