Characteristics of Ecological Energy Carriers Used in Agricultural Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janoško, I.; Černecký, J.; Brodnianska, Z.; Hujo, Ľ. Environmentálne Technológie a Technika, 1st ed.; Slovak University of Agriculture: Nitra, Slovakia, 2016; p. 306. ISBN 978-80-552-1604-1. [Google Scholar]
- Hujo, Ľ.; Jablonický, J.; Tkáč, Z. Návrh Inovatívneho Laboratórneho Simulačného Zariadenia na Skúšanie Hydrostatických Prevodníkov a Hydraulických Kvapalín; Slovak University of Agriculture: Nitra, Slovakia, 2017; p. 140. ISBN 978-80-552-1645-4. [Google Scholar]
- Tkáč, Z.; Majdan, R.; Kosiba, J. Výskum Vlastností Ekologických Kvapalín a Nových Testovacích Metód Mazacích Olejov; Slovak University of Agriculture: Nitra, Slovakia, 2014; ISBN 978-80-552-1140-4. [Google Scholar]
- Nosian, J.; Hujo, Ľ.; Zastempowski, M.; Janoušková, R. Design of laboratory test equipment for testing the hydrostatic transducers. Acta Technol. Agric. 2021, 24, 35–40. [Google Scholar] [CrossRef]
- Turza, J.; Kopiláková, B. Kombinovaný stand pre meranie hydraulických prvkov. Hydraulicka a pneumatika. Časopis Pre Hydraul. Pneum. Autom. Tech. 2011, 8, 60–64. [Google Scholar]
- Majdan, R.; Abrahám, R.; Uhrinová, D.; Nosian, J. Contamination of transmission and hydraulic oils in agricultural tractors and proposal of by-pass filtration system. Agron. Res. 2019, 17, 1107–1122. [Google Scholar]
- Hujo, Ľ.; Nosian, J.; Zastempowski, M.; Kosiba, J.; Kaszkowiak, J.; Michalides, M. Laboratory test of hydraulic pump operating load with monitoring of changes in the physical properties. Meas. Control 2021, 54, 243–251. [Google Scholar] [CrossRef]
- Majdan, R.; Olejár, M.; Abrahám, R.; Šarac, V.; Uhrinová, D.; Jánošová, M.; Nosian, J. Pressure surge analysis of a test bench for biodegradable hydraulic oil. Tribol. Ind. 2018, 40, 183–194. [Google Scholar] [CrossRef]
- Kosiba, J.; Hujo, Ľ. Výskum Degradačných Procesov Ekologických Kvapalín v Procese Prevázdkových Skúšok; Slovak University of Agriculture: Nitra, Slovakia, 2017; ISBN 978-80-552-1733-8. [Google Scholar]
- Pochi, D.; Fanigliulo, R.; Bisaglia, C.; Cutini, M.; Grilli, R.; Fornaciari, L.; Betto, M.; Pari, L.; Gallucci, F.; Capuzzi, L.; et al. Test Rig and Method for Comparative Evaluation of conventional and Bio-Based Hydraulic Fluids and Lubricants for Agricultural Transmissions. Sustainability 2020, 12, 8564. [Google Scholar] [CrossRef]
- Kučera, M.; Aleš, Z.; Pexa, M. Detection and characterization of wear particles of universal tractor oil using of particles size analyser. Agron. Res. 2016, 14, 1351–1360. [Google Scholar]
- Deuster, S.; Schmitz, K. Bio-Based Hydraulic Fluids and the Influence of Hydraulic Oil Viscosity on the Efficiency of Mobile Machinery. Sustainability 2021, 13, 7570. [Google Scholar] [CrossRef]
- Halenár, M.; Nosian, J. Laboratory equipment for testing hydrostatic transducers. In Proceedings of the 25th Anniversary of MendelNet, Brno, Czech, 7–8 November 2018; pp. 418–423. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Density at 15 °C | kg·m−3 | 921 |
Viscosity at 40 °C | mm2·s−1 | 47.2 |
Viscosity at 100 °C | mm2·s−1 | 9.41 |
Viscosity index | - | 188 |
Flash point | °C | 322 |
Pour point | °C | −42 |
Biodegradability according to OECD 301 B | % | >60 |
Biodegradability according to CEC L-33-A 93 | % | 90 |
Water hazard class WGK | - | 0 |
Concentration of Chemical Elements Mg·kg−1 | Barium | Copper | Iron | Potassium | Lead | Tin |
---|---|---|---|---|---|---|
Ba | Cu | Fe | K | Pb | Sn | |
0 h | 0.27 | 0.46 | 0 | 0.15 | 0 | 5.58 |
50 h | 0.06 | 0.14 | 0.98 | 0.29 | 1.89 | 0 |
100 h | 0 | 0.24 | 1.25 | 0.45 | 2.71 | 0 |
150 h | 0 | 0.20 | 1.03 | 0.29 | 2.33 | 0 |
200 h | 0 | 0.25 | 1.43 | 0.56 | 2.74 | 0 |
Concentration of Chemical Elements Mg·kg−1 | Boron | Calcium | Silicon | Zinc | Phosphorus |
---|---|---|---|---|---|
B | Ca | Si | Zn | P | |
0 h | 0 | 3.22 | 0 | 5.07 | 138.35 |
50 h | 0.52 | 2.87 | 1.01 | 6.92 | 185.79 |
100 h | 0.52 | 3.72 | 1.08 | 6.49 | 165.54 |
150 h | 0.58 | 4.53 | 0.96 | 7.27 | 160.02 |
200 h | 0.77 | 5.49 | 1.02 | 7.23 | 153.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hujo, Ľ.; Janoušková, R.; Simikić, M.; Zastempowski, M.; Michalides, M.; Hajdáková, M. Characteristics of Ecological Energy Carriers Used in Agricultural Technology. Processes 2022, 10, 1895. https://doi.org/10.3390/pr10091895
Hujo Ľ, Janoušková R, Simikić M, Zastempowski M, Michalides M, Hajdáková M. Characteristics of Ecological Energy Carriers Used in Agricultural Technology. Processes. 2022; 10(9):1895. https://doi.org/10.3390/pr10091895
Chicago/Turabian StyleHujo, Ľubomír, Romana Janoušková, Mirko Simikić, Marcin Zastempowski, Matej Michalides, and Monika Hajdáková. 2022. "Characteristics of Ecological Energy Carriers Used in Agricultural Technology" Processes 10, no. 9: 1895. https://doi.org/10.3390/pr10091895
APA StyleHujo, Ľ., Janoušková, R., Simikić, M., Zastempowski, M., Michalides, M., & Hajdáková, M. (2022). Characteristics of Ecological Energy Carriers Used in Agricultural Technology. Processes, 10(9), 1895. https://doi.org/10.3390/pr10091895