Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water
Abstract
:1. Introduction
2. Materials and Instrumentation
2.1. Materials
2.2. Instrumentation
3. Methods
3.1. Preparation of Synthetic Produced Water
3.2. Liquid–Liquid Extraction
3.3. Single Parameter Optimization Process
3.3.1. Effect of the Initial Concentration of Oil in PW
3.3.2. Effect of Contact Time
3.3.3. Effect of pH
3.3.4. Effect of Phase Ratio
3.3.5. Effect of Temperature
3.3.6. Effect of Salinity
3.3.7. Cell Viability Assays
4. Results and Discussion
4.1. Screening of ILs
4.2. Effect of Alkyl Chain Length of Cations
4.3. Effect of the Nature of the Cation
4.4. Effect of the Initial Concentration of Oil in PW
4.5. Effect of Contact Time
4.6. Effect of pH
4.7. Effect of Phase Ratio
4.8. Effect of Temperature
4.9. Thermodynamic Study of Oil Extraction by ILs
4.10. Effect of Salinity
4.11. Comparison with Other Materials Used for the Produced Water Treatment
4.12. FTIR Analysis of IL-Oil Interaction
4.13. Ionic Liquids Presented Cytotoxic Properties against Human Cell Lines
4.14. NMR Analysis of IL4
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafiee, S.; Topal, E. An econometrics view of worldwide fossil fuel consumption and the role of US. Energy Policy 2008, 36, 775–786. [Google Scholar] [CrossRef]
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to 2040; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2016. [Google Scholar]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- McCormack, P.; Jones, P.; Hetheridge, M.J.; Rowland, S.J. Analysis of oilfield produced waters and production chemicals by electrospray ionisation multi-stage mass spectrometry (ESI-MSn). Water Res. 2001, 35, 3567–3578. [Google Scholar] [CrossRef]
- Ersahin, M.E.; Ozgun, H.; Kaya, R.; Kose Mutlu, B.; Kinaci, C.; Koyuncu, I. Treatment of produced water originated from oil and gas production wells: A pilot study and cost analysis. Environ. Sci. Pollut. Res. 2017, 25, 6398–6406. [Google Scholar] [CrossRef] [PubMed]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Nasiri, M.; Jafari, I. Produced Water from Oil-Gas Plants: A Short Review on Challenges and Opportunities. Period. Polytech. Chem. Eng. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Veil, J.A.; Puder, M.G.; Elcock, D. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane; Argonne National Lab: Lemont, IL, USA, 2004. [Google Scholar] [CrossRef]
- Reiley, M.C. Science, policy, and trends of metals risk assessment at EPA: How understanding metals bioavailability has changed metals risk assessment at US EPA. Aquat. Toxicol. 2007, 84, 292–298. [Google Scholar] [CrossRef]
- Ofili, O.; Temisanren, T.; Olafuyi, O. A Review of Produced Water Management Processes: A Case Study of a Brown Field in Niger Delta. Pet. Abstr. 2015, 56, 101. [Google Scholar] [CrossRef]
- UN Water. 2018 UN World Water Development Report, Nature-based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Supply, W.J.W.; Programme, S.M. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland, 2015; ISBN 9241509147. [Google Scholar]
- Sauvé, S.; Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 2014, 8, 15. [Google Scholar] [CrossRef]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Sebastian, F.P. Purified Wastewater: The Untapped Water Resource. J. Water Pollut. Control Fed. 1974, 46, 239–246. [Google Scholar]
- Deng, S.; Yu, G.; Jiang, Z.; Zhang, R.; Ting, Y.P. Destabilization of oil droplets in produced water from ASP flooding. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 252, 113–119. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, B.; Thanyamanta, W.; Hawboldt, K.; Zhang, B.; Liu, B. Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments. Mar. Pollut. Bull. 2016, 104, 7–19. [Google Scholar] [CrossRef]
- Shahruddin, M.Z.; Othman, N.H.; Alias, N.H.; Ghani, S.N.A. Desalination of Produced Water Using Bentonite as Pre-Treatment and Membrane Separation as Main Treatment. Procedia-Soc. Behav. Sci. 2015, 195, 2094–2100. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef]
- Matic, A.; Scrosati, B. Ionic liquids for energy applications. MRS Bull. 2013, 38, 533–537. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 2014, 44–53. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, G.; Chi, Y.; Cai, Y.; Zhou, Q.; Hu, J.-T. Use of Ionic Liquids for Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 2003, 75, 5870–5876. [Google Scholar] [CrossRef]
- Zhou, Q.; Bai, H.; Xie, G.; Xiao, J. Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J. Chromatogr. A 2008, 1177, 43–49. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Sugawara, K. Removal of Organic Sulfur from Hydrocarbon Resources Using Ionic Liquids. Energy Fuels 2008, 22, 3303–3307. [Google Scholar] [CrossRef]
- Dietz, M.L.; Stepinski, D.C. Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 2008, 75, 598–603. [Google Scholar] [CrossRef]
- Meindersma, G.W.; Podt, A.; De Haan, A.B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process. Technol. 2005, 87, 59–70. [Google Scholar] [CrossRef]
- Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Ionic Liquids as a Novel Solvent for Lanthanide Extraction. Anal. Sci. 2003, 19, 1097–1098. [Google Scholar] [CrossRef]
- Li, M.; Pittman, C.U.; Li, T. Extraction of polyunsaturated fatty acid methyl esters by imidazolium-based ionic liquids containing silver tetrafluoroborate—Extraction equilibrium studies. Talanta 2009, 78, 1364–1370. [Google Scholar] [CrossRef]
- Abulhassani, J.; Manzoori, J.L.; Amjadi, M. Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry. J. Hazard. Mater. 2010, 176, 481–486. [Google Scholar] [CrossRef]
- Egorov, V.M.; Smirnova, S.V.; Pletnev, I.V. Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation. Sep. Purif. Technol. 2008, 63, 710–715. [Google Scholar] [CrossRef]
- Abou Chacra, L.; Sabri, M.A.; Ibrahim, T.H.; Khamis, M.I.; Hamdan, N.M. Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. J. Environ. Chem. Eng. 2018, 6, 3018–3033. [Google Scholar] [CrossRef]
- Ibrahim, T.H.; Sabri, M.A.; Khamis, M.I.; Amin Elsayed, Y.; Sara, Z.; Hafez, B. Produced water treatment using olive leaves. Desalin. Water Treat. Sci. Eng. 2017, 60, 515–2756. [Google Scholar] [CrossRef]
- Akbar, N.; Khan, N.A.; Sagathevan, K.; Iqbal, M.; Tawab, A.; Siddiqui, R. Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Sci. Rep. 2019, 9, 17012. [Google Scholar] [CrossRef]
- Fan, J.; Fan, Y.; Pei, Y.; Wu, K.; Wang, J.; Fan, M. Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Sep. Purif. Technol. 2008, 61, 324–331. [Google Scholar] [CrossRef]
- Sulaiman, R.; Adeyemi, I.; Abraham, S.R.; Hasan, S.W.; AlNashef, I.M. Liquid-liquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids. J. Mol. Liq. 2019, 294, 111680. [Google Scholar] [CrossRef]
- Lakshmi, A.B.; Sindhu, S.; Venkatesan, S. Performance of ionic liquid as bulk liquid membrane for chlorophenol removal. Int. J. ChemTech Res. 2013, 5, 1129–1137. [Google Scholar]
- Hou, Y.; Ren, Y.; Peng, W.; Ren, S.; Wu, W. Separation of Phenols from Oil Using Imidazolium-Based Ionic Liquids. Ind. Eng. Chem. Res. 2013, 52, 18071–18075. [Google Scholar] [CrossRef]
- Ha, S.H.; Mai, N.L.; Koo, Y.M. Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. Process Biochem. 2010, 45, 1899–1903. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, W.; Xu, Y.; Gong, H.; Gao, J. Liquid-liquid extraction of methanol from its mixtures with hexane using three imidazolium-based ionic liquids. J. Chem. Thermodyn. 2019, 138, 189–195. [Google Scholar] [CrossRef]
- Hazrati, N.; Miran Beigi, A.A.; Abdouss, M. Demulsification of water in crude oil emulsion using long chain imidazolium ionic liquids and optimization of parameters. Fuel 2018, 229, 126–134. [Google Scholar] [CrossRef]
- Freire, M.G.; Santos, L.M.N.B.F.; Fernandes, A.M.; Coutinho, J.A.P.; Marrucho, I.M. An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilib. 2007, 261, 449–454. [Google Scholar] [CrossRef]
- Ibrahim, T.H.; Gulistan, A.S.; Khamis, M.I.; Ahmed, H.; Aidan, A. Produced water treatment using naturally abundant pomegranate peel. Desalin. Water Treat. 2015, 57, 6693–6701. [Google Scholar] [CrossRef]
- Ibrahim, T.H.; Sabri, M.A.; Khamis, M.I. Application of multiwalled carbon nanotubes and its magnetite derivative for emulsified oil removal from produced water. Environ. Technol. 2018, 40, 3337–3350. [Google Scholar] [CrossRef]
- Gulistan, A.S.; Ibrahim, T.H.; Khamis, M.I.; ElSayed, Y. Application of eggplant peels powder for the removal of oil from produced water. Desalin. Water Treat. 2015, 57, 15724–15732. [Google Scholar] [CrossRef]
- Brinda Lakshmi, A.; Balasubramanian, A.; Venkatesan, S. Extraction of Phenol and Chlorophenols Using Ionic Liquid [Bmim]+[BF4]− Dissolved in Tributyl Phosphate. CLEAN-Soil Air Water 2013, 41, 349–355. [Google Scholar] [CrossRef]
- Nandwani, S.K.; Malek, N.I.; Lad, V.N.; Chakraborty, M.; Gupta, S. Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 516, 383–393. [Google Scholar] [CrossRef]
- Pillai, P.; Kumar, A.; Mandal, A. Mechanistic studies of enhanced oil recovery by imidazolium-based ionic liquids as novel surfactants. J. Ind. Eng. Chem. 2018, 63, 262–274. [Google Scholar] [CrossRef]
- Palomar, J.; Ferro, V.R.; Gilarranz, M.A.; Rodriguez, J.J. Computational Approach to Nuclear Magnetic Resonance in 1-Alkyl-3-methylimidazolium Ionic Liquids. J. Phys. Chem. B 2007, 111, 168–180. [Google Scholar] [CrossRef]
- Giernoth, R.; Bankmann, D.; Schlörer, N. High performance NMR in ionic liquids. Green Chem. 2005, 7, 279–282. [Google Scholar] [CrossRef]
- Zhai, C.; Wang, J.; Zhao, Y.; Tang, J.; Wang, H. A NMR study on the interactions of 1-alkyl-3-methylimidazolium ionic liquids with acetone. Z. Phys. Chem. 2006, 220, 775–785. [Google Scholar] [CrossRef]
- Nanda, R.; Damodaran, K. A review of NMR methods used in the study of the structure and dynamics of ionic liquids. Magn. Reson. Chem. 2018, 56, 62–72. [Google Scholar] [CrossRef]
No. | Name | Abbreviations | Molecular Formula | Molar Mass (g/mol) |
---|---|---|---|---|
IL1 | 1-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide | [C2Mim] [NTf2] | C8H11F6N3O4S2 | 391.30 |
IL2 | 1-Butyl-2-3-dimethylimidazolium bis (trifluoromethylsulfonyl) imide | [C4Mim] [NTf2] | C11H17F6N3O4S2 | 433.39 |
IL3 | 1-Methyl-3-octyl-imidazolium bis (trifluoromethylsulfonyl) imide | [C8Mim] [NTf2] | C14H23F6N3O4S2 | 475.47 |
IL4 | 1-Decyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide | [C10Mim] [NTf2] | C16H27F6N3O4S2 | 503.50 |
IL5 | 1-Butyl-4-methylpyridinium bis (trifluoromethylsulfonyl) imide | [C4Mpy] [NTf2] | C12H16F6N2O4S2 | 430.39 |
IL6 | Tributyl methyl phosphonium bis (trifluoromethylsulfonyl) imide | [P1,4,4,4] [NTf2] | C15H30F6NO4PS2 | 497.50 |
IL7 | Butyl trimethylammonium bis (trifluoromethylsulfonyl) imide | [N1,1,1,4] [NTf2] | C9H18F6N2O4S2 | 396.37 |
No. | Ionic Liquids | Cations | Anions |
---|---|---|---|
IL1 | [C2Mim] [NTf2] | ||
IL2 | [C4Mim] [NTf2] | ||
IL3 | [C8Mim] [NTf2] | ||
IL4 | [C10Mim] [NTf2] | ||
IL5 | [C4Mpy] [NTf2] | ||
IL6 | [P1,4,4,4] [NTf2] | ||
IL7 | [N1,1,1,4] [NTf2] |
Ionic Liquid No. | Ionic Liquids Name | Removal Efficiency (%) |
---|---|---|
IL1 | 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide | 80 |
IL2 | 1-Butyl-2-3-dimethylimidazolium bis (trifluoromethylsulfonyl) imide | 82 |
IL3 | 1-methyl-3-octyl-imidazolium bis (trifluoromethylsulfonyl) imide | 83 |
IL4 | 1-Decyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide | 85 |
IL5 | 1-Butyl-4-methyl pyridinium bis (trifluoromethylsulfonyl) imide | 63 |
IL6 | Tributyl methylphosphonium bis (trifluoromethylsulfonyl) imide | 68 |
IL7 | Butyl trimethylammonium bis (trifluoromethyl sulfonyl) imide | 70 |
No. | Material | Efficiency (%) | Contact Time (min) | Reference |
---|---|---|---|---|
1 | olive leaves | 80 | 80 | [35] |
2 | pomegranate peel | 92 | 50 | [45] |
3 | multiwalled carbon nanotubes and their derivates | 85 | 20 | [46] |
4 | Graphene nanoplatelets | 90 | 60 | [34] |
5 | graphene magnetite | 72.20 | 30 | [34] |
6 | eggplant peels | 95 | 40 | [47] |
7 | IL 4 (at a phase ratio of 1:1) | 92.8 | 4 | This study |
H Peaks Shifts | C Peaks Shifts | ||
---|---|---|---|
IL (ppm) | IL4-Oil (ppm) | IL (ppm) | IL4-OIL (ppm) |
8.685 | 8.711 | 135.988 | 136.099 |
7.258 | 7.295 | 123.882 | 123.874 |
7.294 | 7.298 | 122.394 | 122.369 |
7.300 | 7.320 | 77.431 | 77.428 |
7.304 | 7.324 | 50.278 | 50.331 |
7.325 | 7.327 | 36.346 | 36.411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaqat, S.; Khan, A.S.; Akbar, N.; Ibrahim, T.H.; Khamis, M.I.; Nancarrow, P.; Siddiqui, R.; Khan, N.A.; Abouleish, M.Y. Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water. Processes 2022, 10, 1897. https://doi.org/10.3390/pr10091897
Liaqat S, Khan AS, Akbar N, Ibrahim TH, Khamis MI, Nancarrow P, Siddiqui R, Khan NA, Abouleish MY. Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water. Processes. 2022; 10(9):1897. https://doi.org/10.3390/pr10091897
Chicago/Turabian StyleLiaqat, Shehzad, Amir Sada Khan, Noor Akbar, Taleb H. Ibrahim, Mustafa I. Khamis, Paul Nancarrow, Ruqaiyyah Siddiqui, Naveed Ahmed Khan, and Mohamed Yehia Abouleish. 2022. "Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water" Processes 10, no. 9: 1897. https://doi.org/10.3390/pr10091897
APA StyleLiaqat, S., Khan, A. S., Akbar, N., Ibrahim, T. H., Khamis, M. I., Nancarrow, P., Siddiqui, R., Khan, N. A., & Abouleish, M. Y. (2022). Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water. Processes, 10(9), 1897. https://doi.org/10.3390/pr10091897