A Measurement Method for the Pore Structure of Coal Slime Filter Cake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Coal Slime Filter Cake
2.2. Chemical Agent
2.3. Measurement Device and Method for the Pore Structure
3. Results and Discussion
3.1. Effect of the Different Perfusates on Solidification
3.1.1. Shellac
3.1.2. Epoxy Resin and Red Ink
3.1.3. Epoxy Resin and Colorant
3.2. The Effectiveness of the Method for the Pore Structure of Coal Slime Filter Cake
3.2.1. Pore Size
3.2.2. Pore Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
Sp | sorting coefficient |
Skp | skewness |
Kp | kurtosis |
i | percentage on the negative cumulative distribution curve |
Di | corresponding pore diameter when the negative cumulative pore content is i. |
References
- Fan, Y.; Dong, X.; Hui, H. Dewatering effect of fine coal slurry and filter cake structure based on particle characteristics. Vacuum 2015, 114, 54–57. [Google Scholar] [CrossRef]
- Bourcier, D.; Feraud, J.P.; Colson, D.; Mandrick, K.; Ode, D. Influence of particle size and shape properties on cake resistance and compressibility during pressure filtration. Chem. Eng. Sci. 2016, 144, 176–187. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Men, D.; Han, X. Effects of maceral composition on vitrinite reflectance distribution of blended coals. J. Min. Sci. Technol. 2017, 2, 90–98. [Google Scholar]
- Yang, F.; Ning, Z.; Hu, C. Microscopic pore structure characteristics of shale reservoirs. J. Pet. 2013, 34, 301–311. [Google Scholar]
- Li, T.; Wu, C. The grain size effect on pores structure characteristics of high-rank coal before and after the methane adsorption. J. Nat. Gas Geosci. 2021, 6, 111–120. [Google Scholar] [CrossRef]
- Fuller, K.P.; Gaspar, D.; Delgado, L.M.; Pandit, A. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds. Nanomedicine 2016, 11, 1031–1040. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Hunt, A.G.; Ewing, R.P.; Sahimi, M. Tortuosity in Porous Media: A Critical Review. Soil Sci. Soc. Am. J. 2013, 77, 1461–1477. [Google Scholar] [CrossRef]
- Chen, Y. Preparation and Characterization of Porous Materials; University of Science and Technology of China Press: Hefei, China, 2010. [Google Scholar]
- Fan, W.; Wu, J.; Ahmed, S.; Hu, J.; Chen, X.; Li, X.; Zhu, W.; Opoku-Kwanowaa, Y. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE china. Sustainability 2020, 12, 2631. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, H.P.; Hamilton, G.J. Bulk Density and Pore Space Relations; CSIRO: Canberra, Australia, 2002. [Google Scholar]
- Fernandes, A.C.; Pinto, R.; Carvalho, S.; Mafra, L.; Pires, J. Storage and delivery of h2s by microporous and mesoporous materials. Microporous Mesoporous Mater. 2021, 320, 111093. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.R.; Bustin, R.M.; Bustin AM, M. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Q.; Yan, H.; Song, S. Research on pore microstructure features for dredger fill based on mercury intrusion method. Glob. Geol. 2013, 16, 48–53. [Google Scholar]
- Zauer, M.; Hempel, S.; Pfriem, A.; Mechtcherine, V.; Wagenfuhr, A. Investigations of the pore-size distribution of wood in the dry and wet state by means of mercury intrusion porosimetry. Wood Sci. Technol. 2014, 48, 1229–1240. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, Q.; Xing, F.; Pan, D. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Materials 2014, 7, 4282–4296. [Google Scholar] [CrossRef]
- Lai, Q.; Liao, Y.; Liu, Z. Enhanced low-rank coal slime dewatering by adjustment of channel wall structure and surface wettability. Sep. Purif. Technol. 2020, 248, 116970. [Google Scholar] [CrossRef]
- Grayze, S.D.; Jassogne, L.; Six, J.; Bossuyt, H.; Wevers, M. Pore structure changes during decomposition of fresh residue: X-ray tomography analyses. Geoderma 2006, 134, 82–96. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Li, J. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Sci. China Earth Sci. 2010, 53, 854–862. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xia, W.; Xie, G. Filtration of kaolinite and coal mixture suspension: Settling behavior and filter cake structure analysis. Powder Technol. 2021, 381, 122–128. [Google Scholar] [CrossRef]
- Zhuo, Q.; Liu, W.; Xu, H.; Wang, D. Effect of particle size distribution on filter cake pore structure and coal slurry dewatering process. Int. J. Coal Prep. Util. 2020, 42, 1879–1894. [Google Scholar] [CrossRef]
- Schmidt, E.; Loffler, F. Preparation of dust cakes for microscopic examination. Powder Technol. 1990, 60, 173–177. [Google Scholar] [CrossRef]
- Zhang, C. Study on Particle Layer Compression Phenomenon in Filtration Process by Solidification Method; Tsinghua University: Beijing, China, 2005. [Google Scholar]
- Guo, Z.; Liang, L.; Hu, P. Application of low-field NMR in the study of flocculant-aided filtration process of coal tailings. Physicochem. Probl. Miner. Process. 2021, 57, 1–7. [Google Scholar] [CrossRef]
- Zhuo, Q.; Wang, D.; Xu, H.; Liu, W.; Gao, L. Pore structure and permeability of filter cake in coal slurry filtration. Int. J. Coal Prep. Util. 2022, 42, 155–170. [Google Scholar] [CrossRef]
- Hu, P.; Liang, L.; Xie, G.; Zhou, S.; Peng, Y. Effect of slurry conditioning on flocculant-aided filtration of coal tailings studied by low-field nuclear magnetic resonance and X-ray micro-tomography. Int. J. Min. Sci. Technol. 2020, 30, 859–864. [Google Scholar] [CrossRef]
Reagent Name | Specifications | Manufacturer |
---|---|---|
Epoxy resin | 378A | Dongguan Sanming Composite Material Co., Ltd., Dongguan, China |
Curing agent | 378B | Dongguan Sanming Composite Material Co., Ltd., Dongguan, China |
Colorant | Red/black/yellow/blue | Dongguan Huilai Composite Material Technology Co., Ltd., Dongguan, China |
Polyacrylamide | Anionic eight million | Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
Filtration Time/s | Average Pore Size/μm | Average Pore Area/μm2 | Average Pore Circumference/μm | Total Porosity/% |
---|---|---|---|---|
10 | 1.49 | 9.54 | 10.88 | 25.23 |
20 | 1.41 | 8.38 | 9.86 | 24.24 |
40 | 1.35 | 7.30 | 9.24 | 23.50 |
Filtration Time/s | Sp | Skp | Kp |
---|---|---|---|
10 | 1.5559 | 0.0944 | 1.0482 |
20 | 1.5712 | 0.0670 | 1.0374 |
40 | 1.5806 | 0.0636 | 1.0119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhuo, Q.; Xu, H.; Wang, D. A Measurement Method for the Pore Structure of Coal Slime Filter Cake. Processes 2023, 11, 102. https://doi.org/10.3390/pr11010102
Liu L, Zhuo Q, Xu H, Wang D. A Measurement Method for the Pore Structure of Coal Slime Filter Cake. Processes. 2023; 11(1):102. https://doi.org/10.3390/pr11010102
Chicago/Turabian StyleLiu, Libo, Qiming Zhuo, Hongxiang Xu, and Donghui Wang. 2023. "A Measurement Method for the Pore Structure of Coal Slime Filter Cake" Processes 11, no. 1: 102. https://doi.org/10.3390/pr11010102
APA StyleLiu, L., Zhuo, Q., Xu, H., & Wang, D. (2023). A Measurement Method for the Pore Structure of Coal Slime Filter Cake. Processes, 11(1), 102. https://doi.org/10.3390/pr11010102