Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Carbon-Based Flow Electrode
2.3. FCDI Configuration and Desalination Mechanism
2.4. Electrochemical Measurements
2.5. Evaluation of Desalination Performance
3. Results and Discussion
3.1. Characterization of Carbon Materials
3.2. Effect of Carbon Material on FCDI Performance
3.3. Effect of Carbon Flow Electrode Concentration on FCDI Performance
3.4. Effect of Cell Voltage on FCDI Performance
3.5. Effect of Carbon Electrode Flow Rate on FCDI Performance
3.6. Long Run FCDI to Reach Drinkable NaCl Level
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Assessing Access to Water & Sanitation. Global Water, Sanitation, & Hygiene (WASH). Available online: https://www.cdc.gov/healthywater/global/assessing.html (accessed on 21 April 2022).
- Okello, C.; Tomasello, B.; Greggio, N.; Wambiji, N.; Antonellini, M. Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T.D. Faradaic Reactions in Capacitive Deionization (CDI)-Problems and Possibilities: A Review. Water Res. 2018, 128, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Sayed, E.T.; al Radi, M.; Ahmad, A.; Abdelkareem, M.A.; Alawadhi, H.; Atieh, M.A.; Olabi, A.G. Faradic Capacitive Deionization (FCDI) for Desalination and Ion Removal from Wastewater. Chemosphere 2021, 275, 130001. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, L. Ion-Exchange Membrane Capacitive Deionization: A New Strategy for Brackish Water Desalination. Desalination 2011, 275, 62–66. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, H.; Zhang, Y.; Liang, P.; Wang, K. Nitrogen Recovery from Low-Strength Wastewater by Combined Membrane Capacitive Deionization (MCDI) and Ion Exchange (IE) Process. Chem. Eng. J. 2017, 316, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Dai, J.; Jiang, Z.; Chu, B.; Chen, F. Recent Progress and Prospect of Flow-Electrode Electrochemical Desalination System. Desalination 2021, 504, 114964. [Google Scholar] [CrossRef]
- Bentalib, A.; Pan, Y.; Yao, L.; Peng, Z. Properties of Amorphous Iron Phosphate in Pseudocapacitive Sodium Ion Removal for Water Desalination. RSC Adv. 2020, 10, 16875–16880. [Google Scholar] [CrossRef]
- Torkamanzadeh, M.; Wang, L.; Zhang, Y.; Budak, Ö.; Srimuk, P.; Presser, V. MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Appl. Mater. Interfaces 2020, 12, 26013–26025. [Google Scholar] [CrossRef]
- Sriramulu, D.; Yang, H.Y. Free-Standing Flexible Film as a Binder-Free Electrode for an Efficient Hybrid Deionization System. Nanoscale 2019, 11, 5896–5908. [Google Scholar] [CrossRef]
- Agartan, L.; Hayes-Oberst, B.; Byles, B.W.; Akuzum, B.; Pomerantseva, E.; Caglan Kumbur, E. Influence of Operating Conditions and Cathode Parameters on Desalination Performance of Hybrid CDI Systems. Desalination 2019, 452, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.; Zhang, X.; Li, J.; Liu, X.; Lu, T.; Yao, Y.; Pan, L. Novel Hybrid Capacitive Deionization Constructed by a Redox-Active Covalent Organic Framework and Its Derived Porous Carbon for Highly Efficient Desalination. J. Mater. Chem. A Mater. 2019, 7, 25305–25313. [Google Scholar] [CrossRef]
- Shin, Y.U.; Lim, J.; Boo, C.; Hong, S. Improving the Feasibility and Applicability of Flow-Electrode Capacitive Deionization (FCDI): Review of Process Optimization and Energy Efficiency. Desalination 2021, 502, 114930. [Google Scholar] [CrossRef]
- Suss, M.E.; Baumann, T.F.; Bourcier, W.L.; Spadaccini, C.M.; Rose, K.A.; Santiago, J.G.; Stadermann, M. Capacitive Desalination with Flow-through Electrodes. Energy Environ. Sci. 2012, 5, 9511–9519. [Google Scholar] [CrossRef]
- Guyes, E.N.; Simanovski, A.; Suss, M.E. Several Orders of Magnitude Increase in the Hydraulic Permeability of Flow-through Capacitive Deionization Electrodes via Laser Perforations. RSC Adv. 2017, 7, 21308–21313. [Google Scholar] [CrossRef] [Green Version]
- Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. The Effect of the Flow-Regime, Reversal of Polarization, and Oxygen on the Long Term Stability in Capacitive de-Ionization Processes. Electrochim. Acta 2015, 153, 106–114. [Google Scholar] [CrossRef]
- Luo, K.; Niu, Q.; Zhu, Y.; Song, B.; Zeng, G.; Tang, W.; Ye, S.; Zhang, J.; Duan, M.; Xing, W. Desalination Behavior and Performance of Flow-Electrode Capacitive Deionization under Various Operational Modes. Chem. Eng. J. 2020, 389, 124051. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Luo, K.; Xing, W.; Du, J.; Dong, Y.; Li, X.; Tang, W. Effective Fluoride Removal from Brackish Groundwaters by Flow-Electrode Capacitive Deionization (FCDI) under a Continuous-Flow Mode. Sci. Total Environ. 2022, 804, 150166. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Ma, J.; Liang, P. Effective Removal and Selective Capture of Copper from Salty Solution in Flow Electrode Capacitive Deionization. Environ. Sci. (Camb.) 2020, 6, 341–350. [Google Scholar] [CrossRef]
- Pan, Y.; Yao, L.; Wu, D.; Bentalib, A.; Li, J.; Peng, Z. Sulfonated Nickel Phthalocyanine Redox Flow Cell for High-Performance Electrochemical Water Desalination. Desalination 2020, 496, 114762. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Fang, J.; Chu, B.; Li, N.; Shui, L.; Wang, G.; Chen, F. The Optimized Flow-Electrode Capacitive Deionization (FCDI) Performance by ZIF-8 Derived Nanoporous Carbon Polyhedron. Sep. Purif. Technol. 2022, 281, 119345. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Wei, Q.; Li, W.; Liu, X.; Chen, F. Enhanced Desalination Performance of a Flow-Electrode Capacitive Deionization System by Adding Vanadium Redox Couples and Carbon Nanotubes. J. Phys. Chem. C 2021, 125, 1234–1239. [Google Scholar] [CrossRef]
- Tang, L.; Wei, Q.; Yan, J.; Hu, Y.; Chen, X.; Wang, G.; Aung, S.H.; Oo, T.Z.; Yan, D.; Chen, F. Redox Flow Capacitive Deionization in a Mixed Electrode Solvent of Water and Ethanol. J. Electrochem. Soc. 2022, 169, 013501. [Google Scholar] [CrossRef]
- Wei, Q.; Hu, Y.; Wang, J.; Ru, Q.; Hou, X.; Zhao, L.; Yu, D.Y.W.; San Hui, K.; Yan, D.; Hui, K.N.; et al. Low Energy Consumption Flow Capacitive Deionization with a Combination of Redox Couples and Carbon Slurry. Carbon N. Y. 2020, 170, 487–492. [Google Scholar] [CrossRef]
- Ha, Y.; Lee, H.; Yoon, H.; Shin, D.; Ahn, W.; Cho, N.; Han, U.; Hong, J.; Anh Thu Tran, N.; Yoo, C.Y.; et al. Enhanced Salt Removal Performance of Flow Electrode Capacitive Deionization with High Cell Operational Potential. Sep. Purif. Technol. 2021, 254, 117500. [Google Scholar] [CrossRef]
- Luo, L.; He, Q.; Ma, Z.; Yi, D.; Chen, Y.; Ma, J. In Situ Potential Measurement in a Flow-Electrode CDI for Energy Consumption Estimation and System Optimization. Water Res. 2021, 203, 117522. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Ma, J.; Wang, M.; Sun, J.; Waite, T.D. Evaluation of Long-Term Performance of a Continuously Operated Flow-Electrode CDI System for Salt Removal from Brackish Waters. Water Res. 2020, 173, 115580. [Google Scholar] [CrossRef]
- Hou, X.; Liang, Q.; Hu, X.; Zhou, Y.; Ru, Q.; Chen, F.; Hu, S. Coupling Desalination and Energy Storage with Redox Flow Electrodes. Nanoscale 2018, 10, 12308–12314. [Google Scholar] [CrossRef]
- Cho, Y.; Yoo, C.Y.; Lee, S.W.; Yoon, H.; Lee, K.S.; Yang, S.C.; Kim, D.K. Flow-Electrode Capacitive Deionization with Highly Enhanced Salt Removal Performance Utilizing High-Aspect Ratio Functionalized Carbon Nanotubes. Water Res. 2019, 151, 252–259. [Google Scholar] [CrossRef]
- Chen, K.Y.; Shen, Y.Y.; Wang, D.M.; Hou, C.H. Carbon Nanotubes/Activated Carbon Hybrid as a High-Performance Suspension Electrode for the Electrochemical Desalination of Wastewater. Desalination 2022, 522, 115440. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhang, S.; Shang, N.; Zhao, X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.; Bando, Y. MOF-on-MOF Nanoarchitectures for Selectively Functionalized Nitrogen-Doped Carbon-Graphitic Carbon/Carbon Nanotubes Heterostructure with High Capacitive Deionization Performance. Nano Energy 2022, 97, 107146. [Google Scholar] [CrossRef]
- Alcántara, R.; Jiménez-Mateos, J.M.; Lavela, P.; Tirado, J.L. Carbon Black: A Promising Electrode Material for Sodium-Ion Batteries. Electrochem. Commun. 2001, 3, 639–642. [Google Scholar] [CrossRef]
- Ali, M.; Lin, L.; Cartridge, D. High Electrical Conductivity Waterborne Dispersions of Carbon Black Pigment. Prog. Org. Coat 2019, 129, 199–208. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C.; Yang, F.; Zhang, X.; Suss, M.E.; Huang, X.; Liang, P. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. Environ. Sci. Technol. 2019, 54, 1177–1185. [Google Scholar] [CrossRef]
- Liang, P.; Sun, X.; Bian, Y.; Zhang, H.; Yang, X.; Jiang, Y.; Liu, P.; Huang, X. Optimized Desalination Performance of High Voltage Flow-Electrode Capacitive Deionization by Adding Carbon Black in Flow-Electrode. Desalination 2017, 420, 63–69. [Google Scholar] [CrossRef]
- Folaranmi, G.; Tauk, M.; Bechelany, M.; Sistat, P.; Cretin, M.; Zaviska, F. Investigation of Fine Activated Carbon as a Viable Flow Electrode in Capacitive Deionization. Desalination 2022, 525, 115500. [Google Scholar] [CrossRef]
- Gryzlov, D.Y.; Novikova, S.A.; Kulova, T.L.; Skundin, A.M.; Yaroslavtsev, A.B. The Effect of Particle Size on the Processes of Charging and Discharging of the LiFe0.97Ni0.03PO4/C/Ag Cathode Material. Russ. J. Electrochem. 2018, 54, 442–450. [Google Scholar] [CrossRef]
- Álvarez, S.; Blanco-López, M.C.; Miranda-Ordieres, A.J.; Fuertes, A.B.; Centeno, T.A. Electrochemical Capacitor Performance of Mesoporous Carbons Obtained by Templating Technique. Carbon 2005, 43, 866–870. [Google Scholar] [CrossRef]
- Xing, W.; Qiao, S.Z.; Ding, R.G.; Li, F.; Lu, G.Q.; Yan, Z.F.; Cheng, H.M. Superior Electric Double Layer Capacitors Using Ordered Mesoporous Carbons. Carbon 2006, 44, 216–224. [Google Scholar] [CrossRef]
- Department of Health. Salt and Drinking Water. Drinking Water Protection Program. Available online: https://www.health.ny.gov/environmental/water/drinking/salt_drinkingwater.htm#:~:text=While%20there%20is%20no%20drinking,on%20moderately%20restricted%20sodium%20diets (accessed on 21 April 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaikhan, K.; Alsultan, A.; Alkhaldi, A.; Bentalib, A.; Abutalib, A.; Wu, D.; Li, J.; Xie, R.; Peng, Z. Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination. Processes 2023, 11, 195. https://doi.org/10.3390/pr11010195
Alsaikhan K, Alsultan A, Alkhaldi A, Bentalib A, Abutalib A, Wu D, Li J, Xie R, Peng Z. Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination. Processes. 2023; 11(1):195. https://doi.org/10.3390/pr11010195
Chicago/Turabian StyleAlsaikhan, Khaled, Abdullah Alsultan, Abdulrahman Alkhaldi, Abdulaziz Bentalib, Ahmed Abutalib, Dezhen Wu, Jialu Li, Rongxuan Xie, and Zhenmeng Peng. 2023. "Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination" Processes 11, no. 1: 195. https://doi.org/10.3390/pr11010195
APA StyleAlsaikhan, K., Alsultan, A., Alkhaldi, A., Bentalib, A., Abutalib, A., Wu, D., Li, J., Xie, R., & Peng, Z. (2023). Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination. Processes, 11(1), 195. https://doi.org/10.3390/pr11010195