Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Selected Phthalates
2.2. Instrumentation and HPLC Conditions
2.3. Preparation of Standard Solutions
2.4. Sample Preparation
2.5. Human Colon Cell Culture and Treatments
2.6. Cell Viability and Metabolic Assay
2.7. RNA Extraction, Reverse Transcription, and Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)
3. Results
3.1. Development of SPE Procedure
3.2. Method Development
3.3. Analysis of Bottled Water Samples
3.4. Cell Viability and Metabolic Assay
3.5. Gene Expression Assay by qRT-PCR
4. Discussion
4.1. Optimization of Chromatographic Conditions
4.2. HPLC-PDA Comparison with Other Methods
4.3. Effects of Phthalates on Bowel Epithelial Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; He, Y.; Cheng, R.; Li, Q.; Qian, Z.; Lin, X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res. Int. 2022, 29, 40415–40448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ma, B.; Wang, L. Phthalic acid esters in grains, vegetables, and fruits: Concentration, distribution, composition, bio-accessibility, and dietary exposure. Environ. Sci. Pollut. Res. Int. 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Balaguer-Trias, J.; Deepika, D.; Schuhmacher, M.; Kumar, V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. Int. J. Environ. Res. Public Health 2022, 19, 1368. [Google Scholar] [CrossRef] [PubMed]
- Carlstedt, F.; Jönsson, B.A.; Bornehag, C.G. PVC flooring is related to human uptake of phthalates in infants. Indoor Air 2013, 23, 32–39. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Pei, D.S. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems. Chemosphere 2021, 277, 130256. [Google Scholar] [CrossRef]
- Dirtu, A.C.; Geens, T.; Dirinck, E.; Malarvannan, G.; Neels, H.; Van Gaal, L.; Jorens, P.G.; Covaci, A. Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ. Int. 2013, 59, 344–353. [Google Scholar] [CrossRef]
- Koch, H.M.; Lorber, M.; Christensen, K.L.; Pälmke, C.; Koslitz, S.; Brüning, T. Identifying sources of phthalate exposure with human biomonitoring: Results of a 48 h fasting study with urine collection and personal activity patterns. Int. J. Hyg. Environ. Health 2013, 216, 672–681. [Google Scholar] [CrossRef]
- Sui, H.X.; Zhang, L.; Wu, P.G.; Song, Y.; Yong, L.; Yang, D.J.; Jiang, D.G.; Liu, Z.P. Concentration of di(2-ethylhexyl) phthalate (DEHP) in foods and its dietary exposure in China. Int. J. Hyg. Environ. Health 2014, 217, 695–701. [Google Scholar] [CrossRef]
- Stein, T.P.; Schluter, M.D.; Steer, R.A.; Ming, X. Autism and phthalate metabolite glucuronidation. J. Autism Dev. Disord. 2013, 43, 2677–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DEHP—Summary Risk Assessment Report; European Commission Joint Research; OPOCE: Luxemburg, 2008; EUR 23384 EN/2; ISSN 1018-5593.
- European Food Safety Authority (EFSA). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to bis(2-ethylhexyl) phthalate(DEHP) for use in food contact materials. EFSA J. 2005, 3, 243. [Google Scholar] [CrossRef]
- State of the Science: Endocrine Disrupting Chemicals. World Health Organization, and United Nations Environment Programme (UNEP), Summary for Decision-Makers. 2013. Available online: https://www.who.int/publications/i/item/9789241505031 (accessed on 4 December 2022).
- Lei, M.; Menon, R.; Manteiga, S.; Alden, N.; Hunt, C.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice. mSystems 2019, 4, e00724-19. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Yuan, P.; Lei, H.; Zhang, L.; Deng, D.; Zhang, L.; Chen, X. Long-term chronic exposure to di-(2-ethylhexyl)-phthalate induces obesity via disruption of host lipid metabolism and gut microbiota in mice. Chemosphere 2022, 287, 132414. [Google Scholar] [CrossRef]
- Yu, Z.; Xia, Y.; Cheng, S.; Mao, L.; Luo, S.; Tang, S.; Sun, W.; Jiang, X.; Zou, Z.; Chen, C.; et al. Polystyrene nanoparticles aggravate the adverse effects of di-(2-ethylhexyl) phthalate on different segments of intestine in mice. Chemosphere 2022, 305, 135324. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, F.; Ji, S.; Yang, B.; Liang, X. Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution. Talanta 2014, 120, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser-Noti, A.; Grob, K. Blank problems in trace analysis of diethylhexyl and dibutyl phthalate: Investigation of the sources, tips and tricks. Anal. Chim. Acta 2007, 582, 353–360. [Google Scholar] [CrossRef]
- Prokupkovà, G.; Holadovà, K.; Poustka, J.; Hajslova, J. Development of a solidphase micro-extraction method for the determination of phthalic acid esters in water. Anal. Chim. Acta 2002, 457, 211–223. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, H. Phthalates and Their Impacts on Human Health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Luks-Betlej, K. Solid-phase microextraction of phthalates from water. J. Chromatogr. A 2001, 938, 93–101. [Google Scholar] [CrossRef]
- Notardonato, I.; Passarella, S.; Ianiri, G.; Di Fiore, C.; Russo, M.V.; Avino, P. Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Sam-ples Based on Dispersive Liquid–Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. Methods Protoc. 2020, 3, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Jiang, G.-B.; Cai, Y.-Q.; Wang, Y.W.; Shen, D.-Z. Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. J. Environ. Sci. 2007, 19, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shao, Y.; Zhan, M.; Zou, X.; Qu, W.; Zhou, Y. Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urinesamples using UHPLC-MS/MS. Anal. Bioanal. Chem. 2018, 410, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liu, B.; Du, J.; Row, K. Simultaneous determination of four phthalate esters in bottled water using ultrasound-assisted dispersive liquid–liquid microextraction followed by GC-FID detection. Analyst 2010, 135, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-L.; Zhu, L.; Sensenstein, R. Development of a headspace solid-phase microextraction method combined with gas chromatography mass spectrometry for the determination of phthalate esters in cow milk. Anal. Chim. Acta 2005, 538, 41–48. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 2012, 26, 1243–1246. [Google Scholar] [CrossRef]
- Catalano, T.; D’Amico, E.; Moscatello, C.; Di Marcantonio, M.C.; Ferrone, A.; Bologna, G.; Selvaggi, F.; Lanuti, P.; Cotellese, R.; Curia, M.C.; et al. Oxidative Distress Induces Wnt/β-Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers 2021, 13, 6045. [Google Scholar] [CrossRef]
- Daulagala, A.C.; Bridges, M.C.; Kourtidis, A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int. J. Mol. Sci. 2019, 20, 2756. [Google Scholar] [CrossRef] [Green Version]
- Aceto, G.M.; Catalano, T.; Curia, M.C. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Res. Int. 2020, 2020, 1726309. [Google Scholar] [CrossRef] [Green Version]
- Chawla, M.; Mukherjee, T.; Deka, A.; Chatterjee, B.; Sarkar, U.A.; Singh, A.K.; Kedia, S.; Lum, J.; Dhillon, M.K.; Banoth, B.; et al. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc. Natl. Acad. Sci. USA 2021, 118, e2024828118. [Google Scholar] [CrossRef]
- Akkbik, M.; Turksoy, V.A.; Koçoğlu, S. Simultaneous quantitative detection of 10 phthalates in PVC children’s toys by HPLC-PDA. Toxicol. Mech. Methods 2020, 30, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, P.; Di Pasquale, D.; Ruggieri, F.; Fanelli, M.; D’Archivio, A.A.; Carlucci, G. HPLC with diode-array detection for the simultaneous determination of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate in seminal plasma. Biomed. Chromatogr. 2007, 21, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Dural, E. Determination of Selected Phthalates in Some Commercial Cosmetic Products by HPLC-UV. Comb. Chem. High Throughput Screen. 2020, 23, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, Y.; Li, Y.; Yin, S.; Chen, Y.; Wang, J.; Xiao, J.; Sun, C. Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop Combined with High Performance Liquid Chromatography for Analysis of 15 Phthalates in Water. J. AOAC Int. 2019, 102, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Z.W.; Lin, Q.B.; Hu, C.Y.; Su, Q.Z.; Wu, Y.M. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 1026–1035. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Shariati, S.; Esrafili, A.; Shamsipur, M. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J. Chromatogr. A 2009, 1216, 1511–1514. [Google Scholar] [CrossRef]
- Shi, Y.H.; Xiao, J.J.; Feng, R.P.; Liu, Y.Y.; Liao, M.; Wu, X.W.; Hua, R.M.; Cao, H.Q. Factors Affecting the Bioaccessibility and Intestinal Transport of Difenoconazole, Hexaconazole, and Spirodiclofen in Human Caco-2 Cells Following in Vitro Digestion. J. Agric. Food. Chem. 2017, 65, 9139–9146. [Google Scholar] [CrossRef]
- Huels, D.J.; Ridgway, R.A.; Radulescu, S.; Leushacke, M.; Campbell, A.D.; Biswas, S.; Leedham, S.; Serra, S.; Chetty, R.; Moreaux, G.; et al. E-cadherin can limit the transforming properties of activating β-catenin mutations. EMBO J. 2015, 34, 2321–2333. [Google Scholar] [CrossRef]
- Kumar, A.; Chatterjee, I.; Gujral, T.; Alakkam, A.; Coffing, H.; Anbazhagan, A.N.; Borthakur, A.; Saksena, S.; Gill, R.K.; Alrefai, W.A.; et al. Activation of Nuclear Factor-κB by Tumor Necrosis Factor in Intestinal Epithelial Cells and Mouse Intestinal Epithelia Reduces Expression of the Chloride Transporter SLC26A3. Gastroenterology 2017, 153, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Wang, C.; Zhu, J.; Chen, M.; Wang, S.; Li, M.; Lu, Y.; Xiao, P.; Zhou, M.; Li, X.; et al. An NF-κB-responsive long noncoding RNA, PINT, regulates TNF-α gene transcription by scaffolding p65 and EZH2. FASEB J. 2021, 35, e21667. [Google Scholar] [CrossRef]
- Bourgine, J.; Billaut-Laden, I.; Happillon, M.; Lo-Guidice, J.M.; Maunoury, V.; Imbenotte, M.; Broly, F. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: Comparison between human intestinal biopsy samples and colon cell lines. Drug Metab. Dispos. 2012, 40, 694–705. [Google Scholar] [CrossRef] [PubMed]
ANALYTE | Precision (RSD%) | Accuracy (BIAS%) | ||
---|---|---|---|---|
Inter-Day | Intra-Day | Inter-Day | Intra-Day | |
DMF | 1.7 | 1.8 | −2.1 | +6.1 |
2.5 | 1.6 | +3.4 | +3.2 | |
1.9 | 3.2 | −4.2 | −2.7 | |
DEF | 2.4 | 2.9 | +5.4 | −0.9 |
3.1 | 3.7 | −2.0 | −0.8 | |
5.2 | 4.8 | −1.7 | +4.8 | |
DPF | 1.5 | 3.4 | −1.5 | +4.9 |
6.3 | 3.4 | +3.9 | −0.1 | |
4.1 | 6.1 | +4.5 | +5.5 | |
DBF | 5.3 | 5.5 | +3.9 | +3.2 |
1.5 | 5.8 | +4.4 | +0.9 | |
1.8 | 6.7 | −1.8 | +0.5 | |
DIBF | 5.5 | 7.0 | −1.9 | −1.9 |
2.9 | 6.5 | +5.5 | +5.9 | |
3.4 | 5.9 | +6.0 | +0.7 | |
DEEF | 7.1 | 6.3 | −2.0 | −1.0 |
6.4 | 6.7 | +1.9 | +4.9 | |
4.9 | 5.7 | −0.5 | −0.8 |
Samples | DMF | DEF | DPF | DBF | DIBF | DEEF |
---|---|---|---|---|---|---|
#1 | D | ND | ND | ND | 0.026 | 0.014 |
#2 | D | ND | 0.043 | ND | 0.021 | ND |
#3 | ND | ND | ND | ND | 0.034 | 0.010 |
#4 | ND | D | 0.019 | D | 0.022 | ND |
#5 | 0.012 | ND | 0.045 | D | D | ND |
#6 | ND | ND | 0.032 | ND | 0.011 | D |
#7 | ND | ND | 0.074 | 0.016 | ND | 0.028 |
#8 | ND | ND | ND | ND | 0.033 | D |
#9 | D | 0.052 | ND | D | D | 0.011 |
#10 | ND | D | 0.041 | ND | D | 0.023 |
Analytes | Sample Preparation | Instrumentation | Limit of Quantification (µg/mL) | Ref |
---|---|---|---|---|
DEF | SLE 1 | HPLC-PDA | 0.07 | [33] |
DEEF | LLE 2 | HPLC-PDA | 0.05 | [34] |
DMF, DEF, DBF, DEEF | LLE | HPLC-PDA | 0.64 | [35] |
DEF, DIBF, DEEF | DLLME-SFO 3 | HPLC-PDA | 0.10 | [36] |
DMF, DEF, DEEF | ASE 4 | HPLC-PDA | 1.00 | [37] |
DMF, DEF, DPF, DBF, DIBF, DEEF | SPE 5 | HPLC-PDA | 0.01 | proposed method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrone, V.; Bruni, P.; Catalano, T.; Selvaggi, F.; Cotellese, R.; Carlucci, G.; Aceto, G.M. Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model. Processes 2023, 11, 45. https://doi.org/10.3390/pr11010045
Ferrone V, Bruni P, Catalano T, Selvaggi F, Cotellese R, Carlucci G, Aceto GM. Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model. Processes. 2023; 11(1):45. https://doi.org/10.3390/pr11010045
Chicago/Turabian StyleFerrone, Vincenzo, Pantaleone Bruni, Teresa Catalano, Federico Selvaggi, Roberto Cotellese, Giuseppe Carlucci, and Gitana Maria Aceto. 2023. "Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model" Processes 11, no. 1: 45. https://doi.org/10.3390/pr11010045
APA StyleFerrone, V., Bruni, P., Catalano, T., Selvaggi, F., Cotellese, R., Carlucci, G., & Aceto, G. M. (2023). Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model. Processes, 11(1), 45. https://doi.org/10.3390/pr11010045