Research Progress in the Analysis of Chemical Forms of Mercury in Traditional Chinese Medicine
Abstract
:1. Introduction
2. Sources of Mercury
3. Hg in TCM
3.1. Heavy Metal Hg Pollution in Different Medicinal Parts of TCM
3.2. Chemical Forms of Hg in Medicinal Herbs
3.3. Chemical Forms of Hg in Chinese Patent Drugs
4. Analysis Methods for the Chemical Forms of Hg
4.1. Sample Pretreatment Techniques
4.2. Determination Methods
4.2.1. Atomic Absorption Spectroscopy
4.2.2. Inductively Coupled Plasma Atomic Emission Spectrometry
4.2.3. High-Performance Liquid Chromatography–Inductively Coupled Plasma Mass Spectrometry
4.2.4. Liquid Chromatography-Coupled AFS
4.3. Study on the Chemical Forms of Hg Using Synchrotron Radiation Techniques
4.3.1. Chemical Forms of Hg in Environmental Samples
4.3.2. Chemical Forms of Hg in Biological Samples
4.3.3. Research on the Distribution and Transformation of Hg Using the SR Technology
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.H. Brief research on patent protection of traditional chinese medicinal materials. Chin. Invent. Pat. 2012, 7, 24–25. [Google Scholar] [CrossRef]
- Lin, C.H. Research and discussion on the current situation and countermeasures of traditional Chinese medicine in the international market. J. Qiqihar Med. Coll. 2013, 34, 567–568. [Google Scholar]
- Zhao, L.H.; Yang, Y.H.; Hu, Y.C.; Yang, S.H.; Jin, H.Y.; Wei, J.; Yang, M.H. Analysis and research on the current situation of heavy metal pollution in traditional Chinese medicinal materials in China and countermeasures. Chin. Herb. Med. 2014, 45, 1199–1206. [Google Scholar]
- Sun, Y.Z.; Chen, Y.; Lan, H.; Liu, L.Y.; Fang, L. Analysis of the sources, causes, and control technology pathways for mercury pollution in China. Environ. Chem. 2013, 32, 937–942. [Google Scholar]
- Qian, J.F.; Jiang, W.Y.; Niu, Y.F. Geochemical studies of heavy metal pollution in mine-river systems. Bull. Mineral. Petrol. Geochem. 2010, 29, 74–82. [Google Scholar]
- Wang, Z.; You, F.M.; Qiu, X.Y.; Huang, H.X. HPLC-ICP-MS method for the determination of methylmercury, ethylmercury and inorganic mercury in water samples. Fujian Anal. Test 2009, 18, 28–31. [Google Scholar]
- Rahman, M.A.; Hasegawa, H. Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation and bioaccumulation. Appl. Geochem. 2012, 27, 304–314. [Google Scholar] [CrossRef]
- Liu, S.M.; Zhu, Y.; Hao, R. Status of mercury pollution at home and abroad and its management measures. J. Environ. Sci. Technol. 2014, S2, 290–294. [Google Scholar]
- Yu, J.G. Status quo of China mercury emission control and development trend. Chem. Ind. 2010, 28, 40–42. [Google Scholar]
- Chai, Z.; Stemshorn, B.; Hao, J.; Jiang, G.; Hu, J.; Feng, X.; Lan, H.; Sun, Y.; Larssen, T.; Lahl, U.; et al. Special policy study on mercury management in China. In The China Council for International Cooperation on Environment and Development; China Council for International Cooperation on Environment and Development: Beijing, China, 2011. [Google Scholar]
- Lin, Y.H.; Li, Q. Morphological model study of heavy metals in river water. Environ. Chem. 1992, 6, 35–42. [Google Scholar]
- Li, P.; Feng, X.B.; Qiu, G.L.; Shang, L.H.; Li, Z.G. Mercury pollution in Asia: A Review of the Contaminated Sites. J. Hazard. Mater. 2009, 168, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.P. Status quo and analysis of heavy metal pollution of Chinese medicinal materials under ISO international standard “Traditional Chinese Medicine—Heavy Metal Limits of Chinese Materia Medica”. Sci. Technol. Rev. 2017, 35, 91–98. [Google Scholar]
- Gao, S.; Li, X.H.; Gao, Y.B.; Yu, L.G. Determination and analysis of heavy metal content in fruits and seeds of chinese medicinal materials. Fujian Anal. Test 2020, 29, 23–30. [Google Scholar]
- Zuo, T.T. Discussion on the formulation of limits of heavy metals and harmful elements in Chinese medicinal materials and drinking tablets. J. Pharm. Anal. 2020, 40, 688–692. [Google Scholar]
- Meng, S.; Liu, X.M.; Ping, H.J.; Duan, Q.; Feng, S.H.; Liu, Y.L. High performance liquid chromatography-inductively coupled plasma mass spectrometry (ICP-MS) for the determination of inorganic mercury, methylmercury and ethylmercury in Chinese medicinal materials. Chin. Inorg. Anal. Chem. 2023, 13, 414–419. [Google Scholar]
- Huang, L.Q. Research on Animal Medicinal Materials in the Chinese Pharmacopoeia; Fujian Science and Technology Press: Fujian, China, 2021. [Google Scholar]
- Liu, H. Speciation Analysis and Safety Study of Mercury and Arsenic in Mineral and Animal Drugs; Jilin Agricultural University: Jilin, China, 2019. [Google Scholar]
- Liu, H.X.; Wu, W.X.; Wang, D.H.; Deng, S.S.; Ma, Z.J.; Zhang, T. HPC-ICP-MS detection of methylmercury and ethylmercury content in proprietary Chinese medicine containing cinnabar. Shizhen Chin. Med. Chin. Med. 2012, 23, 873–874. [Google Scholar]
- Yang, L.L.; Li, N.; Zhang, D.Q.; Gao, L.R.; Kang, H.Y. Determination of different forms of mercury in Chinese herbal medicine by vapor generation-atomic fluorescence spectrometry. Spectrosc. Spectr. Anal. 2005, 25, 286–289. [Google Scholar]
- Hai, L.Y.B.; Qun, P.; Lu, J.R.; Jiang, M.T.; Wen, Y.; Ma, Q.; Gai, R.Y.; Li, L.B.; Liu, Y. Analysis and safety evaluation of the morphology, valence state and safety evaluation of zota mercury and arsenic in Tibetan medicine based on HPLC-ICP-MS. Chin. Herb. Med. 2022, 53, 2985–2990. [Google Scholar]
- Xu, L.Z.; Xie, Q.; Yan, L.L.; Chen, Y.H.; Wang, J.Y. Morphological analysis method of soluble mercury in proprietary Chinese medicines and determination of sample results. Exp. Technol. Manag. 2011, 28, 40–43. [Google Scholar]
- Lv, H.L.; Zhao, W.; Li, H.; Chen, C.; Ji, Q.L.; Lin, L.N.; Zhao, L.S. Microwave Digestion-ICP-MS method detected the content of 8 heavy metals in 8 medicinal herbs. J. Shenyang Pharm. Univ. 2020, 37, 618–623. [Google Scholar]
- Sun, J.; Chen, C.Y.; Li, Y.F.; Li, B.; Gao, Y.X.; Chai, Z.F. Determination of total mercury and methylmercury in biological samples by ultrasound-assisted solvent extraction-inductively coupled plasma mass spectrometry. Spectrosc. Spectr. Anal. 2007, 27, 173–176. [Google Scholar]
- Song, Q.Q.; Xie, X.X.; Ye, M.D. Ultrasonic extraction-high performance Liquid phase-atomic fluorescence for the determination of different forms of mercury in Wenzhou Seafood. Spectrosc. Lab. 2013, 30, 1335–1339. [Google Scholar]
- Yin, Y.G.; Chen, M.; Peng, J.F.; Liu, J.F.; Jiang, G.B. Dithizone-functionalized solid phase extraction-displacement elution-high performance liquid chromatography-inductively coupled plasma mass spectrometry for mercury speciation in water samples. Talanta 2010, 81, 1788–1792. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Jiang, G.B. Determination of methylmercury and ethylmercury in farmland soils by solid phase microextraction capillary gas chromatography-atomic absorption spectrometry. Rock Miner. Test. 1999, 18, 259–262. [Google Scholar]
- Shi, J.B.; Liao, C.Y.; Wang, Y.W.; Jiang, G.B. Gas chromatography and atomic fluorescence for methylmercury in biological and sediment samples. Spectrosc. Spectr. Anal. 2006, 26, 336–339. [Google Scholar]
- Ni, X.Y.; Wang, Y.Z.; Chen, Q.L.; Liu, R.; Huang, W. High-pressure digestion-determination of mercury in rice by atomic fluorescence spectroscopy. Mod. Food Technol. 2008, 24, 1188–1190. [Google Scholar]
- Ma, Y.M.; Cao, L.L.; Cao, A.L. Determination of mercury content in licorice by atomic absorption spectrometry. Res. Pract. Mod. Chin. Med. 2003, 23. [Google Scholar]
- Zhou, Q.; Wen, J.L.; Huang, Q.H. Determination of arsenic, lead, cadmium and mercury in cinnamon and cumin. Spectrosc. Lab. 2007, 35, 692–694. [Google Scholar]
- Shi, Y.; Xiao, X.Y.; Wei, F.; Xiong, Q.; Ma, S.C.; Lin, R.C. Determination of harmful elements in deer antler gum based on microwave digestion and ICP-AES technology. Chin. J. Exp. Formulae 2013, 19, 151–153. [Google Scholar]
- Liu, K.Z.; Lu, Y.M.; Feng, G.Z.; Zheng, X.Y.; Luo, R.C. Wet digestion of ICP-AES method to determine Cd, Cr, Hg and Pb in codonopsis. Food Ind. 2014, 35, 265–267. [Google Scholar]
- Li, C.X.; Wang, L.L.; Xing, J.J.; Jiang, X.H.; Yan, Y.S. Microwave digestion/ICP-AES method simultaneously determined the contents of Cd, Hg and Pb in traditional Chinese medicines. J. Pharm. Anal. 2009, 29, 433–436. [Google Scholar]
- Su, X.D. Establishment of ICP-AES assay for microwave digestion of mercury and arsenic in Xiaoqinjiao. J. Qinghai Med. Coll. 2009, 30, 205–206. [Google Scholar]
- Hang, Y.G.; Feng, X.Q.; Hu, X.S. Determination of inorganic mercury and methylmercury in Chinese Medicinal Materials of animal origin by high performance liquid chromatography-Inductively coupled plasma mass spectrometry. Anal. Instrum. 2016, 208, 89–94. [Google Scholar]
- Liu, F.; Lai, B.W. Biomimetic extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry for the determination of soluble mercury content in amber dragon pills and einnabar medicinal materials. Guangdong Chem. Ind. 2021, 48, 177–179+186. [Google Scholar]
- Lai, L.P.; Yang, Y.L. LC-AFS method to determine the content of divalent mercury in cinnabar. Her. Tradit. Chin. Med. 2023, 29, 58–60+75. [Google Scholar]
- Hu, L.L.; Liu, K. Liquid chromatography-atomic fluorescence spectrometry was used to determine the contents of arsenic and mercury in eight Chinese medicinal materials. J. Food Saf. Qual. Test. 2021, 12, 2957–2962. [Google Scholar]
- Yang, C.Z.; Cheng, G.F.; Huang, Y.H. Basic knowledge of synchrotron radiation lecture 1 The principle, structure and characteristics of synchrotron radiation light source. Phys. Chem. Test. 2008, 60, 103–106. [Google Scholar]
- Smith, P.G.; Koch, I.; Gordon, R.A.; Mandoli, D.F.; Chapman, B.D.; Reimer, K.J. X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ. Sci. Technol. 2005, 39, 248–254. [Google Scholar] [CrossRef]
- Manceau, A.; Lemouchi, C.; Rovezzi, M.; Lanson, M.; Glatzel, P.; Nagy, K.L.; Gautier-Luneau, I.; Joly, Y.; Enescu, M. Structure, bonding, and stability of mercury complexes with thiolate and thioether ligands from high-resolution XANES spectroscopy and first-principles calculations. Inorg. Chem. 2015, 54, 11776. [Google Scholar] [CrossRef]
- Koningsberger, D.C.; Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; JohnWiley and Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Michael, R.; Jeannine, D.; Michael, H.; Brandy, B.; Miguel, M.; Ben, K.G.; Joy, C.A. Hg L3 XANES Study of Mercury Methylation in Shredded Eichhornia crassipes. Environ. Sci. Technol. 2008, 42, 5568–5573. [Google Scholar]
- Laura, C.; Valentina, R.; Fabrizio, B.; Marco, B.; Claudia, C.; Pilario, C.; Francesco, D.B.; Pierfranco, L.; Géraldine, S. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar]
- Carrascogil, S.; Siebner, H.; Leduc, D.L.; Webb, S.M.; Millan, R.; Andrews, J.C.; Hernandez, L.E. Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ. Sci. Technol. 2013, 47, 3082–3090. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhao, J.X.; Guo, J.X.; Liu, M.J.; Xu, Q.L.; Li, H.; Li, Y.F.; Zheng, L.; Zhang, Z.Y.; Gao, Y.X. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 2017, 182, 293–300. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, C.Y.; Xing, L.; Liu, T.; Xie, Y.N.; Gao, Y.X.; Li, B.; Sui, L.Y.; Chai, Z.F. In situ study of mercury content and its presence state in human hair in Wanshan mercury mine area of Guizhou. Nucl. Technol. 2004, 27, 899–903. [Google Scholar]
- Warner, R.R. X-Ray Microanalysis in Biology. M. A. Hayat. Q. Rev. Biol. 1981, 56, 332. [Google Scholar]
- Zhao, J.T.; Li, Y.F.; Li, Y.Y.; Gao, Y.X.; Li, B.; Hu, L.; Zhao, Y.L.; Chai, Z.F. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Met. Integr. Biometal Sci. 2014, 6, 1951–1957. [Google Scholar] [CrossRef]
- Korbas, M.; O’Donoghue, J.L.; Watson, G.E.; Pickering, I.J.; Singh, S.P.; Myers, G.J.; Clarkson, T.W.; George, G.N. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem. Neurosci. 2010, 1, 810–818. [Google Scholar] [CrossRef]
- Fang, F.M. Progress in the Soil Mercury Pollution Research Division. Soil Environ. 2000, 9, 326–329. [Google Scholar]
- Bao, Z.D. Morphological distribution of mercury in contaminated soil in Wanshan mercury mining area of Guizhou. J. Ecol. 2011, 30, 907–913. [Google Scholar]
- Bernaus, A.; Gaona, X.; Esbri, J.M.; Higueras, P.; Falkenberg, G.; Valiente, M. Microprobe techniques for speciation analysis and geochemical characterization of mine environments: The mercury district of Almaden in Spain. Environ. Sci. Technol. 2006, 40, 4090–4095. [Google Scholar] [CrossRef] [PubMed]
- Anna, B.; Xivier, G.; Manuel, V.; Derk, V.R. Determination of mercury in polluted soils surrounding a chlor-alkali plant: Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal. Chim. Acta 2006, 565, 73–80. [Google Scholar]
- Yin, R.S.; Feng, X.B.; Wang, J.X.; Li, P.; Liu, J.L.; Zhang, Y.; Chen, J.B.; Zheng, L.R.; Hu, T.D. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem. Geol. 2013, 336, 72–79. [Google Scholar] [CrossRef]
- Terzano, R.; Santoro, A.; Spagnuolo, M.; Vekemans, B.; Medici, L.; Janssens, K.; Göttlicher, J.; Denecke, M.A.; Mangold, S.; Ruggiero, P. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ. Poll. 2010, 158, 2702–2709. [Google Scholar] [CrossRef]
- McNear, D.H.; Afton, S.E.; Caruso, J.A. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Met. Integr. Biometal Sci. 2012, 4, 267–276. [Google Scholar] [CrossRef]
- Edward, B.S.; Daniel, R.E.; Mark, E.B.; Thomas, A.H.; Patrick, L.B. Increasing rates of atmospheric mercury deposition in midcontinental. Science 1992, 257, 784–787. [Google Scholar]
- Zhang, Q.G.; Pan, K.; Kang, S.C.; Zhu, A.J.; Wang, W.X. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ. Sci. Technol. 2014, 48, 5220–5228. [Google Scholar] [CrossRef]
- Nicolas, S.B. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 1992, 49, 1010–1017. [Google Scholar]
- Hugh, H.H.; Ingrid, J.P.; Graham, N.G. The chemical form of mercury in fish. Science 2003, 301, 1203. [Google Scholar]
- George, G.N.; MacDonald, T.C.; Korbas, M.; Singh, S.P.; Myers, G.J.; Watson, G.E.; O’Donoghue, J.L.; Pickering, I.J. The chemical forms of mercury and selenium in whale skeletal muscle. Met. Integr. Biometal Sci. 2011, 3, 1232–1237. [Google Scholar] [CrossRef]
- Clarkson, T.W. The biological properties and distribution of mercury. Biochem. J. 1972, 130, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.L.; Serpeloni, J.M.; Batista, B.L.; Souza, S.S.; Barbosa, F. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch. Toxicol. 2010, 84, 891–896. [Google Scholar] [CrossRef]
- Zhao, J.T.; Hu, Y.; Gao, Y.X.; Li, Y.F.; Li, B.; Dong, Y.X.; Chai, Z.F. Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum). Metallomics 2013, 5, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Korbas, M.; Blechinger, S.R.; Krone, P.H.; Pickering, I.J.; George, G.N. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc. Natl. Acad. Sci. USA 2008, 105, 12108–12112. [Google Scholar] [CrossRef] [PubMed]
- Korbas, M.; Macdonald, T.C.; Pickering, I.J.; George, G.N.; Krone, P.H. Chemical form matters: Differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae. ACS Chem. Biol. 2011, 7, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Snapp, K.R. The contribution of dental amalgam to mercury in blood. J. Dental. Res. 1989, 68, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Mark, M.; Jennifer, A.; Chad, M.; Ronald, S.O.; Martha, T.; David, K.; Cynthia, C.G. Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems. Environ. Sci. Technol. 2000, 34, 4908–4916. [Google Scholar]
- Bizily, S.P.; Rugh, C.L.; Summers, A.O.; Meagher, R.B. Phytoremediation of methylmercury pollution: MerB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA 1999, 96, 6808–6813. [Google Scholar] [CrossRef]
- Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. Appl. Environ. Microbiol. 1991, 57, 130–137. [Google Scholar] [CrossRef]
- Patty, C.; Barnett, B.; Mooney, B.; Kahn, A.; Levy, S.; Liu, Y.J.; Pianetta, P.; Andrews, J.C. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina Cordgrass. Environ. Sci. Technol. 2009, 43, 7397–7402. [Google Scholar] [CrossRef] [PubMed]
Classification of Chinese Medicinal Materials | Total Amount of Hg | ||
---|---|---|---|
Sample Number | x ± s (mg·kg−1) | Over Standard Rate (%) | |
Roots and rhizomes | 988 | 0.11 ± 0.43 | 0.71 |
Flowers | 98 | 0.45 ± 1.18 | 5.10 |
Leaves | 19 | 1.68 ± 6.17 | 10.53 |
Holothurian | 134 | 0.17 ± 0.60 | 2.24 |
Fruits and seeds | 270 | 0.19 ± 1.53 | 1.11 |
Animals | 25 | 1.82 ± 4.49 | 12.00 |
Stems and trees | 34 | 0.31 ± 1.14 | 2.94 |
Algae, fungi, and lichens | 26 | 0.06 ± 0.10 | 0 |
Cortex | 101 | 0.07 ± 0.10 | 0 |
Type of Herbal Medicine | Hg(II) (μg·kg−1) | Met-Hg | Et-Hg |
---|---|---|---|
Indigowoad root | 8.777 | – | – |
Chinese Thorowax root | 9.958 | – | – |
Thinleaf Milkwort root | 8.990 | – | – |
Common Anemarrhena rhizome | 10.830 | – | – |
Alisma orientale | 13.231 | – | – |
Saposhnikovia divaricata root | 12.250 | – | – |
Animal Medicines | Ino-Hg (mg·kg−1) | Met-Hg (mg·kg−1) | ||||
---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | |
Bombyx batryticatus | 1595 | 1601 | 144.3 | ND | ND | ND |
Buffalo horn | 2.39 | 2.76 | 3.46 | 2.83 | 3.23 | 3.33 |
Margarita | 5.07 | 7.56 | 59.25 | ND | ND | ND |
Faeces Trogopterori | 529.1 | 1 562 | 42.58 | ND | ND | ND |
Scorpio | 38.04 | 29.66 | 21.53 | 53.97 | 47.31 | 39.91 |
Pheretima | 2888 | 4120 | 43.74 | 10.07 | ND | 16.56 |
Testudinis Carapax et Plastrum | 10.19 | 7.94 | 22.08 | ND | ND | ND |
Eupolyphaga Steleophaga | 728.2 | 738.1 | 21.18 | ND | ND | ND |
Cervi Cornu Pantotrichum | 8.58 | 10.74 | 19.66 | ND | ND | ND |
Asini Corii Colla | 4.44 | 6.34 | 3.65 | ND | ND | ND |
Cervi Cornu | 1604 | 778.2 | 9.90 | ND | ND | ND |
Ostreae Concha | 12.91 | 33.21 | 10.50 | ND | ND | ND |
Cicadae Periostracum | 3036 | 3406 | 127.6 | ND | ND | ND |
Margaritifera Concha | 146.0 | 119.2 | 9.51 | ND | ND | ND |
Trionycis Carapax | 15.93 | 32.09 | 10.59 | ND | ND | ND |
Giant gecko | 7.63 | 24.13 | 11.96 | 21.59 | 91.97 | 30.22 |
Chilopoda | 9.87 | 14.25 | 19.22 | 131.4 | 186.6 | 156.6 |
Hirudo | 12.56 | 14.73 | 15.12 | ND | ND | 17.12 |
Zaocys dhumnades | 5.25 | 8.23 | 4.50 | 97.49 | 104.5 | 47.80 |
Hippocampus | 7.59 | 23.82 | 8.48 | 37.92 | 17.45 | 14.53 |
Gecko | 6567 | 397.3 | 22.73 | 41.11 | 50.93 | 45.15 |
Agkistrodon | 4.08 | 8.11 | 7.38 | 313.1 | 319.7 | 6.99 |
Syngnathus | 8.32 | 8.52 | 7.05 | 7.75 | 9.37 | 11.82 |
Vespae Nidus | 145.5 | 66.00 | 128.0 | ND | ND | ND |
Aspongopus | 52.39 | 67.80 | 49.05 | ND | ND | ND |
Sepiae Endoconcha | 56.36 | 20.56 | 10.15 | ND | ND | ND |
Dried Toads Venom | 33.22 | 54.55 | 14.37 | ND | ND | ND |
Bungarus Parvus | 48.87 | 72.71 | 15.74 | 158.1 | 225.4 | 137.8 |
Bovis Calculus | 229.9 | − | − | ND | ND | ND |
Moschus | 54.63 | − | − | ND | ND | ND |
Cordyceps | 240.6 | − | − | ND | ND | ND |
Chinese Patent Medicine | Hg(II) (μg·kg−1) | Met-Hg (mg·kg−1) | Et-Hg (mg·kg−1) | References |
---|---|---|---|---|
Niuhuang Qianjin powder | – | 0.00656 | – | [19] |
Wanshi Niuhuang Qingxin prescription | 0.03724 | Total 0.00218 | [20] | |
Tibetan medicine Zota | 285.60 | – | – | [21] |
Yixian pill | 4.1 | – | – | [22] |
Rendan pill | 23.1 | – | – | |
Baiziyangxin pills | 5.1 | – | – | |
Bushen Yinao capsules | 23.7 | – | – | |
Zixue | 18.2 | – | – | |
Suhexiang pill | 17.8 | – | – | |
Bingpeng San | 30.7 | – | – | |
Bingpeng Buccal tablet | 11.2 | – | – | |
Xiangsu Zhengwei pill | 7.7 | – | – | |
Children’s Jindan pills | 3.1 | – | – | |
Children’s Qizhen pills | 3.7 | – | – | |
Niuhuang Qingre capsules | 9.7 | – | – | |
JiuJi powder | 11.7 | – | – | |
Qili San | 45.0 | – | – | |
Niuhuang Baolong pills | 1.3 | – | – | |
Qingre Huadu pills | 18.6 | – | – | |
Children’s Zhibao pills | 6.6 | – | – | |
Renshen Zaizao pills | 12.9 | – | – | |
Jiuzhi Qingxin pill | 2.8 | – | – | |
Niuhuang Qinggong pill | 1.4 | – | – | |
Tianwang Buxin pill | 10.2 | – | – | |
Tongren Anshen pill | 11.8 | – | – |
Sample | Extraction Method | Solvent | Extraction Efficiency (%) |
---|---|---|---|
Biological sample [24] | Ultrasonic extraction | 6 mol·L−1 HCl | 80–97 |
Marine products [25] | Ultrasonic extraction | 5 mol·L−1 HCl | 90.1–107.3 |
Water [26] | Solid-phase extraction | Elution of Hg substances with Na2S2O3 | 71.2–94.2 |
Soil [27] | Solid-phase microextraction | Concentrated nitric acid | 93.8–94.7 |
Biological and sediment samples [28] | Acid extraction | 5 mL Milli-Q water and 4 mL KBr/CuSO4 (3:1) | 70–77 |
Rice [29] | High-pressure digestion | 15 g·L−1 KBH4 solution | 95–102 |
Tested Drug | Pretreatment Method | ICP-AES Operating Conditions | Detection Limit | Linear Relationship | Recovery (%) |
---|---|---|---|---|---|
Cinnamon, cumin [31] | After baking at 80 °C for 4 h, grinding, and digestion with concentrated nitric acid, the solution becomes colorless and transparent and is transferred to a 50 mL volume bottle with 5% nitric acid | IRIS Advantage ICP-AES (TJA, Boston, MA, USA); power: 1150 W; plasma gas (argon) flow rate: 12 L·min−1; auxiliary gas (argon) flow rate: 1 L·min−1; carrier gas (argon) flow rate: 2 L·min−1; sample lifting capacity: 1.5 mL·min−1; and Hg determination wavelength: 184.9 nm | 0.08 μg· L−1 | R > 0.999; linear range: 0–10 μg·L−1 | 93.5 |
Antler glue [32] | Microwave digestion: concentrated to 2–3 mL, diluted with water to 25 mL, shaken well, and then obtained | MARS-5 microwave digestion instrument (CEM, Matthews, NC, USA); ARCOS full-spectrum direct reading plasma emission spectrometer (SPECTRO, Kleve, Germany), the atomizer is a standard cross-flow pneumatic atomizer); incident power: 1.4 kW; cooling gas argon, cooling gas flow rate: 12 L·min−1; carrier gas flow rate: 1 L·min−1; auxiliary gas flow rate: 0.8 L·min−1; and sample lifting capacity: 1 mL·min−1 | Detection limit of Pb, Cd, As, Hg, Cu, and Cr: 0.15, 0.01, 0.27, 0.08, 0.03, and 0.03 mg· kg−1, respectively | Standard curves of Pb, Cd, As, Hg, Cu, and Cr were prepared; R of each element: >0.995 | Recovery of Pb, Cd, As, Hg, Cu, and Cr: 90–112 |
Codonopsis [33] | Codon ginseng was crushed through a 100-mesh sieve and dissolved into a 50 mL volumetric bottle with concentrated nitric acid; the digestion tube was rinsed with 5% nitric acid, which determined the volume before being mixed and measured | iCAP6300 ICP-AES (Thermoelectric, Boston, MA, USA); high-frequency transmission power: 1350 W; auxiliary gas flow: 0.5 L·min−1; atomizer flow: 0.18 MPa; flushing pump speed: 50 rpm; analysis pump speed: 50 rpm; vertical observation height: 15.0 mm; integration time low wave: 15 s; high wave: 5 s | 0.065 mg·kg−1 | Linear regression equation: y = 329.929x + 0.487; R = 0.999175 | 97.10–107.75 |
Wild chrysanthemum, chrysanthemum, dandelion, loquat leaf, and cicada [34] | Five kinds of samples were ground, screened with 100 mesh, digested with concentrated nitric acid, and filtered via microwave-assisted digestion into a 50 mL measuring bottle with 2% nitric acid | VISTA MPX ICP-AES (OES, Varian, Palo Alto, CA, USA); plasma gas flow rate: 15.0 L·min−1; auxiliary gas flow rate: 1.50 L·min−1; atomizing gas pressure: 200 kPa; instrument stability time: 15 s; 1 reading time: 5 s; number of readings: 2 times; cleaning time: 10 s; injection delay: 30 s; pump speed: 15 r·min−1; power: 1.00 kW | 0.25 ng·mL−1 | Linear regression equation: y = 3.467 × 102x − 7.72; R = 0.9999; linear range 0.002–9.5 μg· mL−1 | Wild chrysanthemum: recovery rate = 100.1; chrysanthemum: recovery rate = 97.7; dandelion: recovery rate = 98.2; loquat leaf: recovery rate = 93.4; recovery rate: 95.4 |
Gentiana xiaoqinensis [35] | Samples were digested by adding 5 mL of HNO3 and 1 mL of H2O2 into the microwave digestion tank | IRIS Interpid II ICP-AES (USA Thermoelectric, Boston, MA, USA); transmit power: 1.2 KW; high frequency: 27 MHZ; plasma flow rate: 1.5 L·min−1; carrier gas flow rate: 1.2 L·min−1; cooling gas flow rate: 10.5 L·min−1; atomizing gas pressure: 172.64 KPa; instrument stabilization time delay: 15 s; reading time: 3 s | 0.004 μg· mL−1 | Linear regression equation: y = 14.80x + 0.29; R = 0.9997; linear range: 0.0–150.2 mg·mL−1 | 83.33 |
Tested Drugs | Hg Species | Operating Parameters of HPLC | Operating Parameters of ICP-MS | Detection Limit | Recovery (%) | Proportion of Different Species |
---|---|---|---|---|---|---|
Radix isatidis (root), Bupleurum (root), Polygala (root), rhizome (rhizome), Purpurea (tuber), Parsnip (root) [16] | Hg2+, CH3Hg, C2H5Hg | Agilent ZORBAX SB-C18 (5 μm, 4.6 mm × 150 mm) was prepared at a column temperature of 25 °C with a sample size of 20 μL and a flow rate of 1.0 mL·min−1 Mobile phase: 1 g L of cysteine, 1.6 g of ammonium acetate, dissolved with water, and 50 mL of methanol were added, diluted with water to make a volume of 1 L, and shaken well | Plasma power: 1550 W; cooling gas flow rate: 14 L·min−1; auxiliary gas flow rate: 0.8 L·min−1; carrier gas flow rate: 1.07 L·min−1; sampling depth: 5 mm; atomization chamber temperature: 2.7 °C; Ni sampling cone, interception cone, collision pool technology (KED), full quantitative analysis mode; oxide CeO/Ce: <3.0%; collection mass number: 202 Hg; integration time: 0.2 s; collection time: 600 s | Hg2+, CH3Hg, C2H5Hg: 0.003 mg·kg−1 | 75–118 | 106 batches of 6 kinds of Chinese medicinal materials were determined; no CH3Hg+ and CH3CH2Hg+ were detected; inorganic Hg was detected in 94 batches; detection rate: 88.7%; qualified rate: 100% |
Chinese medicinal materials of animal origin [36] | CH3Hg, Hg2+ | Chromatographic column: Agilent Zorbax Plus C18, 4.6 mm × 150 mm × 5 μm; column greenhouse temperature; sample size: 50 μL; velocity of flow: 1.0 mL·min−1 Mobile phase: 0.1 w/v L-cysteine + 0.1% w/v L-cysteine·HCl·H2O | RF power: 1550 W; argon plasma flow rate: 15 L·min−1; argon auxiliary gas flow rate: 0.9 L·min−1; argon atomizer flow rate: 1.17 L·min−1; sampling depth: 8 mm; atomization chamber type: dual channel; atomization chamber temperature: 2 °C; mass–charge ratio (M/Z): 202; and chromatograph integration time: 1.5 s·point−1 | Detection limit of CH3Hg and Hg2+: when the detection limit of the methods was 0.007 mg·kg−1 and 0.005 mg·kg−1 | CH3Hg: 78.0–98.8 Hg2+: 87.3–94.5 | Not mentioned |
Amber Baolong pill (composed of yam, cinnabar, licorice, amber, Apogon, sandalwood, Fructus aurantii, Poria, bile south star, Poncirus aurantia, and red ginseng) [37] | Hg2+, CH3Hg, C2H5Hg | Agilent ZORBAX SB: C18 (4.6 × 150 mm2, 5 μm); methanol: 0.01 mol·L−1; ammonium acetate solution (containing 0.12% L-cysteine) (8:92) was used as the mobile phase; flow rate: 0.4 mL·min−1; and sample size: 20 μL | Not mentioned | Content of divalent Hg in cinnabar in Chinese Pharmacopoeia was taken as the limit | Average recovery of Hg2+, CH3Hg, and C2H5Hg: 101.8%, 101.2%, and 95.3%, respectively | Concentration of Hg2+, CH3Hg, C2H5Hg, CH3Hg+, and CH3CH2Hg+: all in 0.1–5 μg· mL−1 Content of CH3Hg+ and CH3CH2Hg+ in cinnabar medicinal materials: about twice that of amber Baolong pills |
Tibetan medicine Zota [21] | Hg2+, CH3Hg, C2H5Hg | Shim-pack GlST C18 (150 × 4.6 mm2, 5 μm); mobile phase: methanol–0.01 mol·L−1 ammonium acetate solution (containing 0.12% L-cysteine; pH adjusted to 7.5 by ammonia) (8:92); volume flow rate: 0.8 mL·min−1; column temperature: 30 °C | High-frequency power: 1.20 kW; high frequency: 27.12 MHz; auxiliary gas volume flow: 1.10 L·min−1; torch tube type: mini torch tube; atomization chamber swirl; plasma gas volume flow: 9.0 L·min−1; carrier gas volume flow: 0.70 L ·min−1; impact gas type: He gas; sampling depth: 5.0 mm; atomizing chamber temperature: 0 °C; energy filter voltage: 5.0 V | 0.5–20 µg·L−1 | 88.2–95.74 | Hg2+ concentration: 11.25–725.13 μg·g−1; no CH3Hg or C2H5Hg detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Kang, L.; Yuan, X.; Qiao, J.; Fan, Y.; Yao, L.; Qi, K.; Sun, Y.; Dai, X.; Zhang, Y.; et al. Research Progress in the Analysis of Chemical Forms of Mercury in Traditional Chinese Medicine. Processes 2023, 11, 2821. https://doi.org/10.3390/pr11102821
Peng C, Kang L, Yuan X, Qiao J, Fan Y, Yao L, Qi K, Sun Y, Dai X, Zhang Y, et al. Research Progress in the Analysis of Chemical Forms of Mercury in Traditional Chinese Medicine. Processes. 2023; 11(10):2821. https://doi.org/10.3390/pr11102821
Chicago/Turabian StylePeng, Congnan, Liping Kang, Xin Yuan, Jiaqi Qiao, Yilin Fan, Li Yao, Kailin Qi, Yaxuan Sun, Xueling Dai, Yuan Zhang, and et al. 2023. "Research Progress in the Analysis of Chemical Forms of Mercury in Traditional Chinese Medicine" Processes 11, no. 10: 2821. https://doi.org/10.3390/pr11102821
APA StylePeng, C., Kang, L., Yuan, X., Qiao, J., Fan, Y., Yao, L., Qi, K., Sun, Y., Dai, X., Zhang, Y., & Huo, Q. (2023). Research Progress in the Analysis of Chemical Forms of Mercury in Traditional Chinese Medicine. Processes, 11(10), 2821. https://doi.org/10.3390/pr11102821