Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System
Abstract
:1. Introduction
2. Reaction Scheme
3. Process Description and Available Data
Available Data for Model Parameter Tuning
4. Model Development and Implementation
5. Result and Discussion
5.1. Parameter Subset Selection and Parameter Estimation
5.2. Parameter Estimation and Simulation Results
5.3. Simulation Results for Different Operating Conditions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Definition |
rate of coke formation on the metal function of fresh catalyst, kg kgcat−1 h−1 | |
rate of coke formation on the acid function of fresh catalyst, kg kgcat−1 h−1 | |
EC | coke formation activation energy, J mol−1 |
CACP | alkylcyclopentane concentration, kmol m−3 |
P | pressure, bar |
H2/HC | hydrogen over hydrocarbon mole ratio |
coke weight fraction on metallic function of catalyst, kg kg−1 | |
coke weight fraction on acidic function of catalyst, kg kg−1 | |
constant of deactivation equation for metallic function, kg kg−1 kPan1 m1.5 kmol−1.5 | |
constant of deactivation equation for acidic function, kg kg−1 kPan1 m1.5 kmol−1.5 | |
aA | acidic function activity |
aM | metallic function activity |
acidic function activity for coke formation | |
metallic function activity for coke formation | |
rate of ith reaction, kmol kgcat−1 h−1 | |
rate of ith reaction on the fresh catalyst, kmol kgcat−1 h−1 | |
constant of deactivation, m3 kmol−1 | |
constant of deactivation, m3 kmol−1 | |
constant of deactivation, m3 kmol−1 | |
constant of deactivation, m3 kmol−1 | |
constant of deactivation equation | |
constant of deactivation equation | |
Cj | component concentration of component j, kmol m−3 |
r | radius, m |
ur | radial velocity, m h−1 |
stoichiometric coefficient of component j in reaction i | |
uz | catalyst velocity, m h−1 |
i | numerator for reaction |
j | numerator for component |
CT | total concentration, kmol m−3 |
CP | specific heat capacity at constant pressure, kJ kmol−1 K−1 |
dp | particle diameter, m |
sphericity | |
void fraction of catalyst bed | |
reactor bulk density, kg m−3 | |
heat of reaction, kJ mol−1 | |
control volume thickness in radial direction, m | |
control volume length, m | |
T | temperature, °C |
Pm | measured pressure, bar |
Tm | measured temperature, °C |
measured coke weight fraction on metallic function of catalyst, kg kg−1 | |
measured coke weight fraction on acidic function of catalyst, kg kg−1 | |
coordinated change variable | |
ST | temperature measurement error, °C |
SP | pressure measurement error, bar |
Scoke | coke weight fraction measurement error, kg kg−1 |
SBenzene | benzene molar flowrate measurement error, kmol h−1 |
References
- Antos, G.J.; Aitani, A.M. Catalytic Naphtha Reforming, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Hongjun, Z.; Mingliang, S.; Huixin, W.; Zeji, L.; Hongbo, J. Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Pet. Sci. Technol. 2010, 28, 667–676. [Google Scholar] [CrossRef]
- Lapinski, M.P.; Metro, S.; Pujado, P.R.; Moser, M. Catalytic reforming in petroleum processing. In Handbook of Petroleum Processing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 229–260. [Google Scholar]
- Iranshahi, D.; Rafiei, R.; Jafari, M.; Amiri, S.; Karimi, M.; Rahimpour, M.R. Applying new kinetic and deactivation models in simulation of a novel thermally coupled reactor in continuous catalytic regenerative naphtha process. Chem. Eng. J. 2013, 229, 153–176. [Google Scholar] [CrossRef]
- Donald, M. Catalytic Reforming; Penn Well Publishing Company: Tulsa, OK, USA, 1985. [Google Scholar]
- Iranshahi, D.; Karimi, M.; Amiri, S.; Jafari, M.; Rafiei, R.; Rahimpour, M.R. Modeling of naphtha reforming unit applying detailed description of kinetic in continuous catalytic regeneration process. Chem. Eng. Res. Des. 2014, 92, 1704–1727. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Jafari, M.; Iranshahi, D. Progress in catalytic naphtha reforming process: A review. Appl. Energy 2013, 109, 79–93. [Google Scholar] [CrossRef]
- Stijepovic, M.Z.; Linke, P.; Kijevcanin, M. Optimization approach for continuous catalytic regenerative reformer processes. Energy Fuels 2010, 24, 1908–1916. [Google Scholar] [CrossRef]
- Gyngazova, M.S.; Kravtsov, A.V.; Ivanchina, E.D.; Korolenko, M.V.; Chekantsev, N.V. Reactor modeling and simulation of moving-bed catalytic reforming process. Chem. Eng. J. 2011, 176, 134–143. [Google Scholar] [CrossRef]
- Stijepovic, V.; Linke, P.; Alnouri, S.; Kijevcanin, M.; Grujic, A.; Stijepovic, M. Toward enhanced hydrogen production in a catalytic naphtha reforming process. Int. J. Hydrogen Energy 2012, 37, 11772–11784. [Google Scholar] [CrossRef]
- Antos, G.; Moser, M.; Lapinski, M. The new generation of commercial catalytic naphtha-reforming catalysts. In Catalytic Naphtha Reforming, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2004; pp. 326–342. [Google Scholar] [CrossRef]
- Marin, G.; Froment, G.; Lerou, J.J.; De Backer, W. Simulation of a catalytic naphtha reforming unit W. Eur. Fed. Chem. Eng. 1983, 2, 1–7. [Google Scholar]
- Marin, G.; Froment, G. Reforming of C6 hydrocarbons on a PtAl2O3 catalyst. Chem. Eng. Sci. 1982, 37, 759–773. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; Ancheyta, J. Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel 2011, 90, 3492–3508. [Google Scholar] [CrossRef]
- Smith, R. Kinetic analysis of naphtha reforming with platinum catalyst. Chem. Eng. Prog. 1959, 55, 76–80. [Google Scholar]
- Jiang, H.; Sun, Y.; Jiang, S.; Li, Z.; Tian, J. Reactor model of counter-current continuous catalyst-regenerative reforming process toward real time optimization. Energy Fuels 2021, 35, 10770–10785. [Google Scholar] [CrossRef]
- Shakor, Z.M.; AbdulRazak, A.A.; Sukkar, K.A. A detailed reaction kinetic model of heavy naphtha reforming. Arab. J. Sci. Eng. 2020, 45, 7361–7370. [Google Scholar] [CrossRef]
- Iranshahi, D.; Bahmanpour, A.; Paymooni, K.; Rahimpour, M.; Shariati, A. Simultaneous hydrogen and aromatics enhancement by obtaining optimum temperature profile and hydrogen removal in naphtha reforming process; a novel theoretical study. Int. J. Hydrogen Energy 2011, 36, 8316–8326. [Google Scholar] [CrossRef]
- Mohaddeci, S.; Sadighi, S.; Zahedi, S.; Bonyad, H. Reactor modeling and simulation of catalytic reforming process. Pet. Coal 2006, 48, 28–35. [Google Scholar]
- Rahimpour, M.R.; Iranshahi, D.; Pourazadi, E.; Bahmanpour, A.M. Boosting the gasoline octane number in thermally coupled naphtha reforming heat exchanger reactor using de optimization technique. Fuel 2012, 97, 109–118. [Google Scholar] [CrossRef]
- Talaghat, M.R.; Roosta, A.A.; Khosrozadeh, I. A novel study of upgrading catalytic reforming unit by improving catalyst regeneration process to enhance aromatic compounds, hydrogen production, and hydrogen purity. J. Chem. Pet. Eng. 2017, 51, 81–94. [Google Scholar] [CrossRef]
- Askari, A.; Karimi, H.; Rahimi, M.R.; Ghanbari, M. Simulation and modeling of catalytic reforming process. Pet. Coal 2012, 54, 76–84. [Google Scholar]
- Boukezoula, T.F.; Bencheikh, L.; Belkhiat, D.E.C. A heterogeneous model for a cylindrical fixed bed axial flow reactors applied to a naphtha reforming process with a non-uniform catalyst distribution in the pellet. React. Kinet. Catal. Lett. 2020, 131, 335–351. [Google Scholar] [CrossRef]
- Lid, T.; Skogestad, S. Data reconciliation and optimal operation of a catalytic naphtha reformer. J. Process. Control 2008, 18, 320–331. [Google Scholar] [CrossRef]
- Otaraku, I.J.; Egun, I.L. Optimization of hydrogen production from nigerian crude oil samples through Continuous Catalyst Regeneration (CCR) reforming process using aspen hysys. Am. J. Appl. Chem. 2017, 5, 69–72. [Google Scholar] [CrossRef]
- Jenkins, J.H.; Stephens, T.W. Kinetics of cat reforming. J. Hyd. Proc. 1980, 163–167. [Google Scholar]
- Ramage, M.P.; Graziani, K.R.; Krambeck, F. 6 Development of mobil’s kinetic reforming model. Chem. Eng. Sci. 1980, 35, 41–48. [Google Scholar] [CrossRef]
- Froment, G. The kinetics of complex catalytic reactions. Chem. Eng. Sci. 1987, 42, 1073–1087. [Google Scholar] [CrossRef]
- Weng, H.; Sun, S.; Jiang, H. Lumped model for catalytic reforming (I) establishment of the model. J. Chem. Ind. Eng.-China 1994, 45, 407. [Google Scholar]
- Taskar, U.; Riggs, J.B. Modeling and optimization of a semiregenerative catalytic naphtha reformer. AIChE J. 1997, 43, 740–753. [Google Scholar] [CrossRef]
- Vathi, G.P.; Chaudhuri, K.K. Modelling and simulation of commercial catalytic naphtha reformers. Can. J. Chem. Eng. 1997, 75, 930–937. [Google Scholar] [CrossRef]
- Taghavi, B.; Fatemi, S. Modeling and application of response surface methodology in optimization of a commercial continuous catalytic reforming process. Chem. Eng. Commun. 2014, 201, 171–190. [Google Scholar] [CrossRef]
- Mahdavian, M.; Fatemi, S.; Fazeli, A. Modeling and simulation of industrial continuous naphtha catalytic reformer ac-companied with delumping the naphtha feed. Int. J. Chem. React. Eng. 2010, 8. [Google Scholar] [CrossRef]
- Ancheyta-Juárez, J.; Villafuerte-Macías, E. Kinetic modeling of naphtha catalytic reforming reactions. Energy Fuels 2000, 14, 1032–1037. [Google Scholar] [CrossRef]
- Krane, H.; Groh, A.; Schulman, B.; Sinfelt, J. Reactions in catalytic reforming of naphthas. In Proceedings of the 5th World Petroleum Congress, 1959; OnePetro: Richardson, TX, USA, 1959. [Google Scholar]
- Ancheyta-Juarez, J.; Villafuerte-Macias, E.; Diaz-Garcia, L.; Gonzalez-Arredondo, E. Modeling and simulation of four catalytic reactors in series for naphtha reforming. Energy Fuels 2001, 15, 887–893. [Google Scholar] [CrossRef]
- Yusuf, A.Z.; Aderemi, B.O.; Patel, R.; Mujtaba, I.M. Study of industrial naphtha catalytic reforming reactions via modelling and simulation. Processes 2019, 7, 192. [Google Scholar] [CrossRef]
- Elizalde, I.; Ancheyta, J. Dynamic modeling and simulation of a naphtha catalytic reforming reactor. Appl. Math. Model. 2015, 39, 764–775. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, X.X. Molecular modeling and optimization for catalytic reforming. Chem. Eng. Commun. 2004, 191, 500–512. [Google Scholar] [CrossRef]
- Hou, W.; Su, H.; Hu, Y.; Chu, J. Lumped kinetics model and its on-line application to commercial catalytic naphtha reforming process. J. Chem. Ind. Eng. -China 2006, 57, 1605. [Google Scholar]
- Weifeng, H.; Hongye, S.; Shengjing, M.; Jian, C. Multiobjective optimization of the industrial naphtha catalytic reforming process. Chin. J. Chem. Eng. 2007, 15, 75–80. [Google Scholar] [CrossRef]
- Arani, H.M.; Shirvani, M.; Safdarian, K.; Dorostkar, E. Lumping procedure for a kinetic model of catalytic naphtha reforming. Braz. J. Chem. Eng. 2009, 26, 723–732. [Google Scholar] [CrossRef]
- Fazeli, A.; Fatemi, S.; Mahdavian, M.; Ghaee, A. Mathematical modeling of an industrial naphtha reformer with three adiabatic reactors in series. Iran. J. Chem. Eng. 2009, 28, 97–102. [Google Scholar] [CrossRef]
- Dong, X.-J.; He, Y.-J.; Shen, J.-N.; Ma, Z.-F. Multi-zone parallel-series plug flow reactor model with catalyst deactivation effect for continuous catalytic reforming process. Chem. Eng. Sci. 2018, 175, 306–319. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Liang, C. 38-lumped kinetic model for reforming reaction and its application in continuous catalytic reforming. CIESC J. 2012, 63, 1076–1082. [Google Scholar]
- Iranshahi, D.; Jafari, M.; Rafiei, R.; Karimi, M.; Amiri, S.; Rahimpour, M.R. Optimal design of a radial-flow membrane reactor as a novel configuration for continuous catalytic regenerative naphtha reforming process considering a detailed kinetic model. Int. J. Hydrogen Energy 2013, 38, 8384–8399. [Google Scholar] [CrossRef]
- Jafari, M.; Rafiei, R.; Amiri, S.; Karimi, M.; Iranshahi, D.; Rahimpour, M.R.; Mahdiyar, H. Combining continuous catalytic regenerative naphtha reformer with thermally coupled concept for improving the process yield. Int. J. Hydrogen Energy 2013, 38, 10327–10344. [Google Scholar] [CrossRef]
- Saeedi, R.; Iranshahi, D. Multi-objective optimization of thermally coupled reactor of CCR naphtha reforming in presence of SO2 oxidation to boost the gasoline octane number and hydrogen. Fuel 2017, 206, 580–592. [Google Scholar] [CrossRef]
- Saeedi, R.; Iranshahi, D. Hydrogen and aromatic production by means of a novel membrane integrated cross flow CCR naphtha reforming process. Int. J. Hydrogen Energy 2017, 42, 7957–7973. [Google Scholar] [CrossRef]
- Zagoruiko, A.N.; Belyi, A.S.; Smolikov, M.D.; Noskov, A.S. Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds. Catal. Today 2014, 220, 168–177. [Google Scholar] [CrossRef]
- Babaqi, B.S.; Takriff, M.S.; Kamarudin, S.K.; Othman, N.T.A. Mathematical modeling, simulation, and analysis for predicting improvement opportunities in the continuous catalytic regeneration reforming process. Chem. Eng. Res. Des. 2018, 132, 235–251. [Google Scholar] [CrossRef]
- Babaqi, B.S.; Takriff, M.S.; Othman, N.T.A.; Kamarudin, S.K. Yield and energy optimization of the continuous catalytic regeneration reforming process based particle swarm optimization. Energy 2020, 206, 118098. [Google Scholar] [CrossRef]
- Al-Shathr, A.; Shakor, Z.M.; Majdi, H.S.; AbdulRazak, A.A.; Albayati, T.M. Comparison between artificial neural network and rigorous mathematical model in simulation of industrial heavy naphtha reforming process. Catalysts 2021, 11, 1034. [Google Scholar] [CrossRef]
- Ivanchina, E.; Chernyakova, E.; Pchelintseva, I.; Poluboyartsev, D. Mathematical modeling and optimization of semi-regenerative catalytic reforming of naphtha. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2021, 76, 64. [Google Scholar] [CrossRef]
- Mohaddecy, S.R.S.; Sadighi, S.; Bahmani, M. Optimization of catalyst distribution in the catalytic naphtha reformer of Tehran Refinery. Pet. Coal 2008, 50, 60–68. [Google Scholar]
- Chen, W.; Biegler, L.T. Reduced Hessian based parameter selection and estimation with simultaneous collocation approach. AIChE J. 2020, 66, e16242. [Google Scholar] [CrossRef]
- McLean, K.A.P.; McAuley, K.B. Mathematical modelling of chemical processes-obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. Can. J. Chem. Eng. 2012, 90, 351–366. [Google Scholar] [CrossRef]
- McLean, K.A.P.; Wu, S.; McAuley, K.B. Mean-squared-error methods for selecting optimal parameter subsets for estimation. Ind. Eng. Chem. Res. 2012, 51, 6105–6115. [Google Scholar] [CrossRef]
- Yao, K.Z.; Shaw, B.M.; Kou, B.; McAuley, K.B.; Bacon, D.W. Modeling ethylene/butene copolymerization with multi-site catalysts: Parameter estimability and experimental design. Polym. React. Eng. 2003, 11, 563–588. [Google Scholar] [CrossRef]
- Thompson, D.E.; McAuley, K.B.; McLellan, P.J. Parameter Estimation in a simplified MWD model for HDPE produced by a ziegler-natta catalyst. Macromol. React. Eng. 2009, 3, 160–177. [Google Scholar] [CrossRef]
- Aiello, J.P.; Jiang, Y.; Moebus, J.A.; Greenhalgh, B.R.; McAuley, K.B. Predicting polyethylene molecular weight and composition distributions obtained using a multi-site catalyst in a gas-phase lab-scale Reactor. Macromol. Theory Simul. 2021, 30, 2000079. [Google Scholar] [CrossRef]
- Cui, W.J.; McAuley, K.B.; Whitney, R.A.; Spence, R.E.; Xie, T. Mathematical model of polyether production from 1,3-propanediol. Macromol. React. Eng. 2013, 7, 237–253. [Google Scholar] [CrossRef]
- Antos, G.J.; Aitani, A.M.; Parera, J.M. Catalytic Naphtha Reforming: Science and Technology; Marcel Dekker Inc.: New York, NY, USA, 1995. [Google Scholar]
- Lee, S. Encyclopedia of Chemical Processing; Taylor & Francis US: New York, NY, USA, 2006. [Google Scholar]
- Charpentier, J. Hydrodynamic of two-phase ow in packed beds. J. Powder Bulk Solid Technol. 1978, 2, 53–60. [Google Scholar]
- Sa, M.; Mostoufi, N.; Sotudeh-Gharebagh, R. Modeling and simulation of continuous catalytic regeneration (CCR) process. Int. J. Appl. Eng. Res. 2011, 2, 115. [Google Scholar]
- Benitez, V.M.; Pieck, C.L. Influence of Indium Content on the Properties of Pt–Re/Al2O3 Naphtha Reforming Catalysts. Catal. Lett. 2009, 136, 45–51. [Google Scholar] [CrossRef]
- Mazzieri, V.; Pieck, C.; Vera, C.; Yori, J.; Grau, J. Effect of Ge content on the metal and acid properties of Pt-Re-Ge/Al2O3-Cl catalysts for naphtha reforming. Appl. Catal. A Gen. 2009, 353, 93–100. [Google Scholar] [CrossRef]
- Samoila, P.; Boutzeloit, M.; Benitez, V.; D’ippolito, S.A.; Especel, C.; Epron, F.; Vera, C.R.; Marécot, P.; Pieck, C.L. Influence of the pretreatment method on the properties of trimetallic Pt–Ir–Ge/Al2O3 prepared by catalytic reduction. Appl. Catal. A Gen. 2007, 332, 37–45. [Google Scholar] [CrossRef]
- Ren, X.-H.; Bertmer, M.; Stapf, S.; Demco, D.; Blümich, B.; Kern, C.; Jess, A. Deactivation and regeneration of a naphtha reforming catalyst. Appl. Catal. A Gen. 2002, 228, 39–52. [Google Scholar] [CrossRef]
- González-Marcos, M.; Iñarra, B.; Guil, J.; Gutiérrez-Ortiz, M. Development of an industrial characterisation method for naphtha reforming bimetallic Pt-Sn/Al2O3 catalysts through n-heptane reforming test reactions. Catal. Today 2005, 107–108, 685–692. [Google Scholar] [CrossRef]
- Hill, J.M.; Cortright, R.D.; Dumesic, J.A. Silica-and L-zeolite-supported Pt, Pt/Sn and Pt/Sn/K catalysts for isobutane dehydrogenation. Appl. Catal. A Gen. 1998, 168, 9–21. [Google Scholar] [CrossRef]
- Liu, K.; Fung, S.C.; Ho, T.C.; Rumschitzki, D.S. Kinetics of catalyst coking in heptane reforming over Pt−Re/Al2O3. Ind. Eng. Chem. Res. 1997, 36, 3264–3274. [Google Scholar] [CrossRef]
- Tailleur, R.G.; Davila, Y. Optimal Hydrogen Production through Revamping a Naphtha-Reforming Unit: Catalyst Deactivation. Energy Fuels 2008, 22, 2892–2901. [Google Scholar] [CrossRef]
- Liu, K.; Fung, S.C.; Ho, T.C.; Rumschitzki, D.S. Heptane reforming over Pt–Re/Al2O3: Reaction network, kinetics, and apparent selective catalyst deactivation. J. Catal. 2002, 206, 188–201. [Google Scholar] [CrossRef]
Reaction Network Developers | Number of Lumps | Number of Reactions | Reactor System Models |
---|---|---|---|
Smith,1959 [15] | 3 | 4 | SRR 3 reactors [18,19,20,21] SRR 4 reactors [22,23] CCR 4 reactors [24,25] |
Jenkins et al., 1980 [26] | 31 | 78 | |
Ramage et al., 1980 [27] | 13 | 24 | Fixed-bed |
Froment, 1987 [28] | 28 | 81 | Fixed-bed |
Weng et al., 1994 [29] | 16 | 27 | |
Taskar et al., 1997 [30] | 35 | 36 | SRR 3 reactors |
Padmavathi et al., 1997 [31] | 26 | 48 | SRR 3 reactors [31] CCR 4 reactors [32] CCR 3 reactors [33] |
Ancheyta et al., 2000 [34] (extended version of Krane el al., 1959 [35]) | 24 | 71 | Fixed-bed (3 reactors) [34] SRR 4 reactors [36,37] Fixed-bed 1 reactor [38] |
Hu et al., 2004 [39] | 21 | 51 | Fixed-bed 3 reactors |
Hou et al., 2006 [40] | 20 | 31 | SRR [40] CCR 4 reactors [41] CCR 3 reactors [10] |
Arani et al., 2009 [42] | 17 | 15 | Fixed-bed 3 reactors |
Fazeli et al., 2009 [43] | 26 | 47 | Fixed-bed 3 reactors |
Hongjun et al., 2010 [2] | 27 | 52 | CCR 4 reactors [2,44] |
Rodriguez et al., 2011 [14] | 33 | 41 | SRR 4 reactors |
Wang et al., 2012 [45] | 38 | 86 | CCR |
Iranshahi et al., 2013 [4] | 32 | 84 | CCR 4 reactors [4,6,46,47,48,49] |
Zagoruiko et al., 2014 [50] | 62 | 146 | fixed and moving catalyst beds |
Babagi et al., 2018 [51] | 36 | 55 | CCR 4 reactors [51,52] |
Zakari et al., 2019 [37] | 25 | 71 | SRR 4 reactors |
Shakor et al., 2020 [17] | 32 | 132 | SRR 4 reactors [17,53] |
Jiang et al., 2021 [16] | 44 | 70 | CCR 4 reactors |
Ivanchina et al., 2021 [54] | 9 | 22 | SRR 4 reactors |
Feed Conditions | Value | ||
---|---|---|---|
Naphtha feed rate (kmol h−1) | 5118 | ||
H2/hydrocarbon mole ratio | 1.63 | ||
Reactor conditions and geometry | 1st reactor | 2nd reactor | 3rd reactor |
Inlet temperature (°C) | 515 | 515 | 515 |
Inlet pressure (bar) | 5.4 | 4.9 | 4.5 |
Inner annulus radius (m) | 0.73 | 0.73 | 0.735 |
Outer annulus radius (m) | 1.275 | 1.4 | 1.55 |
Catalyst bed height (m) | 7.87 | 8.92 | 11.45 |
Typical properties of catalyst | |||
dp (mm) | 1.8 | ||
ε | 0.3 | ||
ρb (kg m−3) | 690 |
1 | Steady state condition is considered, but dynamic model developed to facilitate implementation in Aspen Custom Modeler. |
2 | Diffusion of mass and heat in both radial and axial directions of the reactor is neglected. |
3 | Catalyst particles are spherical, resulting in the Kozeny Carman and Burke Plummer parameter values of 150 and 1.75, respectively, in the Ergun equation [65]. Catalyst in the bed moves downward in perfect plug flow. |
4 | Ideal gas law is applicable. (Due to high temperature and low pressure) |
5 | Adiabatic conditions exist (insulated outlet wall). |
6 | Cross-flow pattern is considered in the reactors (Gas stream moves radially toward the center and catalyst moves axially downward). |
7 | Peripheral gradient (gradient along the perimeter) is neglected. |
8 | Physical properties are dependent on temperature and pressure. |
9 | Intra-pellet heat and mass diffusion in the catalyst pellet are ignored. Catalyst and gas-phase are assumed to have the same local temperature. |
10 | Since mass flow rate of gas is much more than mass flow rate of catalyst, we can neglect the catalyst enthalpy. |
(4.1) | Mass balance on gas phase species | |
(4.2) | Mass balance on coke on the metallic sites | |
(4.3) | Mass balance on coke on the acidic function | |
(4.4) | Energy balance | |
(4.5) | Velocity distribution | |
(4.6) | Ergun equation |
Number | ||
---|---|---|
For q = 1…9 | Mass balance on gas phase species | 5.1.1 to 5.1.9 |
For q = 1…9 | Mass balance on coke on the metallic function | 5.2.1 to 5.2.9 |
For q = 1…9 | Mass balance on coke on the acidic function | 5.3.1 to 5.3.9 |
For q = 1…9 | Energy balance | 5.4.1 to 5.4.9 |
For q = 1…9 | Velocity distribution | 5.5.1 to 5.5.9 |
Ergun equation | 5.6 |
Measured Variable | Measurement Uncertainties (S) |
---|---|
Temperatures (T1m, T2m, T3m) | sT = 5 °C |
Pressures (P1m, P2m, P3m) | sP = 0.02 bar |
Coke concentration () | scoke = 0.01 kg kg−1 |
Benzene molar flowrate () | sbenzene = 15 kmol h−1 |
Parameter | Initial Guess | Lower Bound | Upper Bound | Tuned Estimate |
---|---|---|---|---|
ɛ (void fraction) | 0.3 | 0.21 | 0.39 | 0.2934 |
E34 | 18,860 | 16,974 | 20,746 | 18,892 |
E56 | 21,240 | 19,116 | 23,364 | 23,364 |
E63 | 34,610 | 31,149 | 38,071 | 35,178 |
E27 | 18,860 | 16,974 | 20,746 | 18,655 |
n1 | 0.94 | 0.658 | 1.222 | 1.163 |
E7 | 19,500 | 17,550 | 21,450 | 19,264 |
E37 | 18,860 | 16,974 | 20,746 | 18,801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atarianshandiz, M.; McAuley, K.B.; Shahsavand, A. Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System. Processes 2023, 11, 2838. https://doi.org/10.3390/pr11102838
Atarianshandiz M, McAuley KB, Shahsavand A. Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System. Processes. 2023; 11(10):2838. https://doi.org/10.3390/pr11102838
Chicago/Turabian StyleAtarianshandiz, Mahmud, Kimberley B. McAuley, and Akbar Shahsavand. 2023. "Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System" Processes 11, no. 10: 2838. https://doi.org/10.3390/pr11102838
APA StyleAtarianshandiz, M., McAuley, K. B., & Shahsavand, A. (2023). Modeling and Parameter Tuning for Continuous Catalytic Reforming of Naphtha in an Industrial Reactor System. Processes, 11(10), 2838. https://doi.org/10.3390/pr11102838