The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Partial Proximate Analysis and Vitrinite Reflectance
4.2. Maceral Composition
4.3. Trace Elements in Coal
4.4. REY in Coal
4.5. Minerals in Coal
5. Discussion
5.1. Provenance Characteristics
5.2. The Depositional Environment
5.2.1. Coal Facies Interpretation
5.2.2. Trace Element Analysis
5.3. Influence of Depositional Environment on Enrichment of Trace Elements
6. Conclusions
- (1)
- The C3 coal was classified as a bituminous coal with an ultra-low moisture content, a medium-high ash yield, and medium-low volatile content. Compared with the average values for Chinese and world coals, Cu (av. 141.29 µg/g) and V (av. 196.85 µg/g) were enriched, while several other trace elements were slightly enriched, including Co, Hf, Nb, Sc, Ta, Zn, and Zr in the C3 coal.
- (2)
- The C3 coal was deposited in a low-lying peat swamp typied by fresh water, and reducing conditions, mainly within a limno-telmatic environment.
- (3)
- Trace elements, including Cu, V, Hf, Nb, Sc, Ta, Zr, Zn, Co, and REY, were easily enriched in the limno-telmatic environment with fresh water and reducing conditions. Additionally, REY and V were also significantly enriched in the brackish water limno-telmatic conditions with the same depositional environment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benton, M.J.; Newell, A.J. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res. 2014, 25, 1308–1337. [Google Scholar] [CrossRef]
- Shao, L.Y.; Wang, X.T.; Lu, J.; Wang, D.D.; Hou, H.H. A Reappraisal on Development and Prospect of Coal Sedimentology in China. Acta Sedimentol. Sin. 2017, 35, 1016–1031, (In Chinese with English abstract). [Google Scholar]
- Ouyang, S.; Zhu, H.C. Query the assumption of “End-Permian fungal spike event”, with special reference to the Permo-Triassic transitional palynofloras. Acta Palaeontol. Sin. 2007, 46, 394–410, (In Chinese with English abstract). [Google Scholar]
- Wu, Y.Y.; Qin, Y.; Wang, A.K.; Shen, J. Geochemical anomaly and the causes of transition metal accumulations in late Permian coal from the eastern Yunnan-western Guizhou region. Int. J. Min. Sci. Technol. 2013, 23, 105–111. [Google Scholar] [CrossRef]
- Williams, M.L.; Jones, B.G.; Carr, P.F. Geochemical consequences of the Permian–Triassic mass extinction in a non-marine succession, Sydney Basin, Australia. Chem. Geol. 2012, 326–327, 174–188. [Google Scholar] [CrossRef]
- Wang, G.Q.; Sun, B.L.; Liu, C.; Wu, J.; Pan, X.Y.; Zeng, F.G. Paleo-peat sedimentary environment and controlling on trace elements: Example from the 11# coal seam in Donglutian Coalmine of Ningwu Coalfield. J. Palaeogeogr. 2022, 24, 1210–1223, (In Chinese with English abstract). [Google Scholar]
- Dai, S.F.; Luo, Y.B.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.D.; Zhao, C.L.; Tian, H.M.; Zou, J.H. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Oboirien, B.O.; Thulari, V.; North, B.C. Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types. Appl. Energy 2016, 177, 81–86. [Google Scholar] [CrossRef]
- Fu, X.G.; Wang, J.; Feng, X.L.; Chen, W.B.; Wang, D.; Song, C.Y.; Zeng, S.Q. Mineralogical composition of and trace-element accumulation in lower Toarcian anoxic sediments: A case study from the Bilong Co. oil shale, eastern Tethys. Geol. Mag. 2016, 153, 618–634. [Google Scholar] [CrossRef]
- Diessel, C.F.K. The correlation between coal facies and depositional environments. In Advances in the Study of the Sydney Basin; University of Newcastle: Newcastle, Australia, 1986; pp. 19–22. [Google Scholar]
- Diessel, C. Coal-Bearing Depositional Systems; Thomson Press Ltd.: New Delhi, India, 1992; pp. 161–264. [Google Scholar]
- Calder, J.H.; Gibling, M.R.; Mukhopadhyay, P.K. Peat Formation in a Westphalian B Piedmont Setting, Cumberland Basin, Nova Scotia: Implications for the Maceral-Based Interpretation of Rheotrophic and Raised Paleomires; Contribution series No. 91-002; Chamber of Mineral Resources of Nova Scotia: Halifax, NS, Canada, 1991; pp. 283–296. [Google Scholar]
- Petersen, H.I.; Ratanasthien, B. Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, southern Thailand: Changing peat-forming conditions related to relative sealevel controlled watertable variations. Int. J. Coal Geol. 2011, 87, 2–12. [Google Scholar] [CrossRef]
- Lou, Y.; Su, Y.L.; Wang, W.D.; Xia, P.; Wang, K.; Xiong, W.; Yu, Y.; Shao, L.J.; Yang, F.Q.; Chen, X.P. Coal facies and its effects on pore characteristics of the Late Permian Longtan coal, western Guizhou, China. Geofluids 2022, 6071514. [Google Scholar] [CrossRef]
- Kang, S.L. Coal facies model and coal-generated hydrocarbon of the Paleogene to Neogene coals. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2021. (In Chinese with English abstract). [Google Scholar]
- Moss, P.T.; Greenwood, D.R.; Archibald, S.B. Regional and local vegetation community dynamics of the eocene okanagan highlands (British columbia-Washington state) from palynology. Can. J. Earth Sci. 2005, 42, 187–204. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 2012, 113, 94–110. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.F.; French, D. The importance of minerals in coal as the hosts of chemical elelments: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Shao, L.Y.; Hua, F.H.; Wang, J.; Ji, X.K.; Yan, Z.M.; Zhang, T.C.; Wang, X.T.; Ma, S.M.; Jones, T.; Lu, H.N. Palynological dynamics in the late Permian and the Permian-Triassic transition in southwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 619, 111540. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Xiao, L.; Wang, Y.M.; Wang, K.M.; Sha, S.L. Sedimentary Responses to Uplift of Emeishan Mantle Plume and its implications. Geol. Rev. 2006, 52, 30–37, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Cao, J.; Zhang, B.L.; Liao, Z.W.; Zhang, B.; Liu, J.C.; Shi, C.H. Genesis of the wangpo bed in the sichuan basin: Formation by eruptions of the emeishan large igneous province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 594, 110935. [Google Scholar] [CrossRef]
- Bercovici, A.; Cui, Y.; Forel, M.B.; Yu, J.X.; Vajda, V. Terrestrial paleoenvironment characterization across the Permian-Triassic boundary in South China. J. Asian Earth Sci. 2015, 98, 225–246. [Google Scholar] [CrossRef]
- ASTM Standard D3173-11; Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM Standard D3174-11; Annual Book of ASTM Standards. Test Method for Ash in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM Standard D3175-11; Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- Chinese Standard GB/T 40485-2021; Method of Determining Automatically the Random Reflectance of Vitrinite in Coal-Image Analysis Method. GB Standards: Shenzhen, China, 2021. (in Chinese)
- Chinese Standard GB/T 15588-2013; Classification of Macerals for Bituminous Coal. GB Standards: Shenzhen, China, 2013. (in Chinese)
- Chinese Standard GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks-Part 30: Determination of 44 Elements. GB Standards: Shenzhen, China, 2010. (in Chinese)
- ASTM Standard D388-12; Standard Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2012.
- Chinese Standard MT/T850-2000; Classification for Total Moisture in Coal. GB Standards: Shenzhen, China, 2000. (in Chinese)
- Chinese Standard GB/T 15224.1-2018; Classification for Quality of Coal-Part 1: Ash. GB Standards: Shenzhen, China, 2018. (in Chinese)
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; Xie, P.P.; Jiang, Y.F.; Hood, M.M.; O’keefe, J.M.K.; Song, H.J. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for carbonaceous biolithes: World average for trace elements in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Wang, J. Geochemistry of Late Permian Coal in Xuanwei, Eastern Yunnan, China and Its Relation to the Permian-Triassic Boundary. Ph.D. Dissertation, Henan Polytechnic University, Jiaozuo, China, 2015. [Google Scholar]
- Seredin, V.V.; Dai, S.F. Coal deposits as a potential alternative source for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Hao, L.B.; Qi, C.M. Principles of Geochemistry; Geological Press: Beijing, China, 2004; pp. 2, 54–55. (In Chinese) [Google Scholar]
- Ren, D.Y.; Zhao, F.H.; Dai, S.F.; Zhang, J.Y.; Luo, K.L. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006; pp. 393–401. (In Chinese) [Google Scholar]
- Dai, S.F.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar]
- Tang, X.Y.; Huang, W.H. Trace Elements of Chinese Coal; The Commercial Press: Beijing, China, 2004; pp. 3–41. (In Chinese) [Google Scholar]
- Qin, G.H.; Cao, D.Y.; Wei, Y.C.; Wang, A.M.; Liu, J.C. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district, northeastern Ordos Basin, China: Key role of paleopeatforming environments in Ga-Li-REY enrichment. J. Geochem. Explor. 2020, 213, 106494. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; pp. 21–40. [Google Scholar]
- Kalkreuth, W.D.; Marchioni, D.L.; Calder, J.H.; Lamberson, M.N.; Naylor, R.D.; Paul, J. The relationship between coal petrography and depositional environments from selected coal basins in Canada. Int. J. Coal Geol. 1991, 19, 21–76. [Google Scholar] [CrossRef]
- Thompson, S.; Morley, R.J.; Barnard, P.C.; Cooper, B.S. Facies recognition of some Tertiary coals applied to prediction of oil source rock occurrence. Mar. Petrol. Geol. 1985, 2, 288–297. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.H.; Hao, R.L. A method for judging depositional environment of coal reservoir based on coal facies parameters and rare earth element parameters. J. Pet. Sci. Eng. 2021, 207, 109128. [Google Scholar] [CrossRef]
- Liang, H.R.; Xu, G.S.; Yu, Q.; Xu, F.H.; Wang, D.Y.; Chen, Z.Y. Paleosalinity and Its Association with Organic Matter: A Case Study from the Eocene Shahejie Formation, Laizhou Bay Sag, Bohai Bay Basin (China). J. Ocean Univ. China 2021, 20, 741–754. [Google Scholar] [CrossRef]
- Li, J.; Chen, D. Summary of quantified research method on paleosalinity. Pet. Geol. Recovery Effic. 2003, 10, 1075. [Google Scholar]
- Ye, C.C.; Yang, Y.B.; Fang, X.M.; Zhang, W.L. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sediment. Geol. 2016, 346, 49–59. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Jiang, F.H.; Zhang, C.G. Geochemical characteristics and lake basin evolution of mudstone and shale of the middle section of the third member of Shahejie Formation in Dongpu depression. Mineral. Petrol. 2023. Available online: https://kns.cnki.net/kcms2/detail/51.1143.TD.20230609.0907.002.html (accessed on 10 July 2023). (In Chinese with English abstract).
- Xiong, X.H.; Xiao, J.F. Geochemical Indicators of Sedimentary Environments—A Summary. Earth Environ. 2011, 39, 405–414. [Google Scholar]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Rezaei, M.; Sadeghi, M.; Pourkaseb, H.; Sepahvand, M. Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran: A review. Mineral. Mag. 2016, 80, 127–142. [Google Scholar] [CrossRef]
- Wallace, M.W.; Hood, A.V.S.; Shuater, A.; Greig APlanavsky, N.J.; Reed, C.P. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 2017, 466, 12–19. [Google Scholar] [CrossRef]
- Wang, W.F.; Qin, Y.; Song, D.Y.; Fu, X.H. Geochemistry of rare earth elements in the middle and high sulfur coals from North Shanxi Province. Geochimica 2002, 31, 564–570, (In Chinese with English abstract). [Google Scholar]
Sample NO. | Mad | Ad | Vd | FCd | R°ran |
---|---|---|---|---|---|
C3-1 | 0.84 | 54.39 | 11.77 | 33.84 | 1.21 |
C3-3 | 1.04 | 56.93 | 11.97 | 31.1 | 1.32 |
C3-5 | 1.05 | 27.01 | 18.66 | 54.33 | 1.05 |
C3-6 | 1.12 | 11.3 | 22.69 | 66.01 | 1.15 |
C3-7 | 1.02 | 12.81 | 21.21 | 65.98 | 1.23 |
C3-8 | 1.47 | 24.3 | 19.11 | 56.59 | 1.35 |
C3-9 | 1.36 | 22.62 | 19.69 | 57.69 | 1.22 |
C3-10 | 1.49 | 43.36 | 15.98 | 40.66 | 1.77 |
C3-11 | 0.88 | 24.17 | 19.78 | 56.05 | 1.77 |
C3-12 | 1.41 | 19.55 | 20.98 | 59.47 | 1.26 |
Sample | C3-1 | C3-3 | C3-5 | C3-6 | C3-7 | C3-8 | C3-9 | C3-10 | C3-11 | C3-12 | Av. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitrinite | Telinite | 11.2 | 8.2 | 13.7 | 5.6 | 18.7 | 23.6 | 16.7 | 20.6 | 6.8 | 3.7 | 12.9 |
Collodetrinite | 37.4 | 58.7 | 25.2 | 13.9 | 22.5 | 32.6 | 44.0 | 44.2 | 39.9 | 42.8 | 36.1 | |
Telocollinite | 3.3 | 5.9 | 22.7 | 67.8 | 37.3 | 21.3 | 20.0 | 4.2 | 9.8 | 32.2 | 22.5 | |
Vitrodetrinite | 20.7 | 12.8 | 18.1 | 6.7 | 12.6 | 8.9 | 6.0 | 10.9 | 11.9 | 9.3 | 11.8 | |
sub-total | 72.6 | 85.6 | 79.7 | 94.0 | 91.1 | 86.4 | 86.7 | 79.9 | 68.4 | 88.0 | 83.2 | |
Inertinite | Fusinite | 9.5 | 1.1 | 0.8 | 2.3 | 4.4 | 1.1 | 0.8 | 0.7 | 7.6 | 1.2 | 3.0 |
Semifusinite | 2.3 | 0 | 0.2 | 0.2 | 0.7 | 0.6 | 0.2 | 0 | 1.8 | 0.7 | 0.7 | |
Inertodetrinite | 0.9 | 0.8 | 0 | 0 | 0.3 | 0.2 | 0.4 | 0.2 | 0.2 | 0.7 | 0.4 | |
Macrinite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.4 | 0.1 | |
Sclerotinite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0.0 | |
sub-total | 12.7 | 1.9 | 1.0 | 2.5 | 5.4 | 1.9 | 1.4 | 1.3 | 9.6 | 3.0 | 4.1 | |
Liptinite | Cutinite | 0 | 0 | 0.2 | 0 | 0 | 0.7 | 0.6 | 0.4 | 0 | 0.4 | 0.2 |
Mineral matter | Clay minerals | 1.6 | 2.9 | 5.0 | 0.9 | 0.5 | 2.3 | 1.0 | 3.4 | 0.7 | 0.9 | 1.9 |
Quartz | 11.1 | 7.1 | 13.1 | 0.2 | 1.2 | 7.2 | 8.4 | 4.2 | 20.3 | 7.0 | 8.0 | |
Pyrite | 1.2 | 0.4 | 0 | 0.8 | 0.3 | 1.1 | 1.1 | 0.4 | 0.5 | 0.2 | 0.6 | |
Calcite | 0.9 | 2.1 | 1.0 | 1.6 | 1.5 | 0.4 | 0.8 | 0.4 | 0.5 | 0.5 | 1.0 | |
Total | 14.8 | 12.5 | 19.1 | 3.5 | 3.5 | 11.0 | 11.3 | 8.4 | 22.0 | 8.6 | 11.5 | |
Coal facies | GI | 5.72 | 45.11 | 79.70 | 37.60 | 16.87 | 45.47 | 61.93 | 11.68 | 7.13 | 34.00 | — |
TPI | 0.45 | 0.21 | 0.86 | 3.68 | 1.73 | 1.12 | 0.75 | 0.46 | 0.50 | 0.71 | — |
Sample | C3-1 | C3-3 | C3-5 | C3-6 | C3-7 | C3-8 | C3-9 | C3-10 | C3-11 | C3-12 | Av. | China [32] | World [33] | CC1 | CC2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba | 65.8 | 90.7 | 57.3 | 26.4 | 29.1 | 38.4 | 41.1 | 173 | 46 | 26.70 | 59.45 | 159 | 150 | 0.37 | 0.40 |
Be | 0.587 | 1.65 | 1.9 | 1.38 | 1.42 | 2.03 | 1.96 | 5.92 | 2.34 | 1.85 | 2.10 | 2.11 | 1.6 | 1.00 | 1.31 |
Cd | 0.532 | 0.104 | 0.086 | 0 | 0.082 | 0.194 | 0.115 | 0.109 | 0.328 | 0.11 | 0.17 | 0.25 | 0.22 | 0.66 | 0.75 |
Co | 22.7 | 16.3 | 18.2 | 22.6 | 22.3 | 24.7 | 26.8 | 19.8 | 35.4 | 28.40 | 23.72 | 7.08 | 5.1 | 3.35 | 4.65 |
Cr | 33.9 | 31.9 | 17.7 | 15.1 | 16.1 | 22.4 | 25.2 | 73.1 | 25.7 | 21.30 | 28.24 | 15.4 | 16 | 1.83 | 1.77 |
Cs | 0.513 | 2.3 | 0.401 | 0.043 | 0.108 | 0.302 | 0.255 | 1.46 | 0.196 | 0.15 | 0.57 | 1.13 | 1 | 0.51 | 0.57 |
Cu | 69.3 | 116 | 44.5 | 34.4 | 45.7 | 166 | 117 | 594 | 83 | 143.00 | 141.29 | 17.5 | 16 | 8.07 | 8.83 |
Ga | 5.72 | 11.1 | 9.13 | 3.62 | 4.31 | 9.58 | 7.27 | 20.4 | 5.63 | 5.87 | 8.26 | 6.55 | 5.8 | 1.26 | 1.42 |
Hf | 2.65 | 3.64 | 5.27 | 1.14 | 1.7 | 4.52 | 3.84 | 14.1 | 2.37 | 2.14 | 4.14 | 3.71 | 1.2 | 1.12 | 3.45 |
Li | 7.44 | 19.3 | 23.4 | 6.68 | 8.99 | 20.5 | 14.5 | 72.8 | 7.96 | 8.22 | 18.98 | 31.8 | 12 | 0.60 | 1.58 |
Mo | 0.585 | 1.37 | 1.12 | 0.371 | 0.556 | 1.23 | 2.43 | 8.91 | 0.502 | 2.96 | 2.00 | 3.08 | 2.2 | 0.65 | 0.91 |
Nb | 7.96 | 7.93 | 6.84 | 2.21 | 2.85 | 6.2 | 6.7 | 29 | 5.59 | 3.65 | 7.89 | 9.44 | 3.7 | 0.84 | 2.13 |
Ni | 23.2 | 16.7 | 17.3 | 20 | 18.9 | 25.5 | 21.4 | 29.7 | 24.3 | 24.00 | 22.10 | 13.7 | 13 | 1.61 | 1.70 |
Pb | 9.74 | 8.26 | 21.8 | 16.7 | 10.1 | 17.2 | 13.3 | 10.2 | 10.1 | 11.30 | 12.87 | 15.1 | 7.8 | 0.85 | 1.65 |
Rb | 6.75 | 16.1 | 5.02 | 1.53 | 1.83 | 3.47 | 3.47 | 20.7 | 2.98 | 1.93 | 6.38 | 9.25 | 14 | 0.69 | 0.46 |
Sb | 1.27 | 1.24 | 0.728 | 0.956 | 0.894 | 0.877 | 0.844 | 2.11 | 0.772 | 1.04 | 1.07 | 0.84 | 0.92 | 1.28 | 1.17 |
Sc | 5.81 | 7.49 | 7.01 | 2.12 | 3.78 | 9.42 | 8.38 | 25.5 | 5.47 | 6.91 | 8.19 | 4.38 | 3.9 | 1.87 | 2.10 |
Sr | 32.7 | 59.4 | 30.4 | 26.5 | 39.9 | 31.1 | 47 | 92 | 32.8 | 54.40 | 44.62 | 140 | 110 | 0.32 | 0.41 |
Ta | 0.397 | 0.536 | 0.603 | 0.131 | 0.212 | 0.542 | 0.48 | 2.32 | 0.394 | 0.26 | 0.59 | 0.62 | 0.28 | 0.95 | 2.10 |
Th | 2.01 | 7.93 | 7.93 | 1.11 | 1.9 | 6.64 | 4.68 | 16.8 | 2.59 | 2.32 | 5.39 | 5.84 | 3.3 | 0.92 | 1.63 |
Tl | 0.04 | 0.071 | 0.027 | 0.05 | 0.005 | 0.027 | 0.029 | 0.106 | 0.023 | 0.04 | 0.04 | 0.47 | 0.63 | 0.09 | 0.07 |
U | 0.993 | 3.37 | 2.41 | 0.491 | 0.715 | 1.86 | 1.77 | 4.45 | 1.05 | 1.08 | 1.82 | 2.43 | 2.4 | 0.75 | 0.76 |
V | 135 | 384 | 135 | 59.4 | 57.1 | 173 | 193 | 467 | 199 | 166.00 | 196.85 | 35.1 | 25 | 5.61 | 7.87 |
W | 4.79 | 2.89 | 0.801 | 0.798 | 1.07 | 0.543 | 2.49 | 1.48 | 3.05 | 1.41 | 1.93 | 1.08 | 1.1 | 1.79 | 1.76 |
Zn | 109 | 43.7 | 52.7 | 51.6 | 56.8 | 68.3 | 56.8 | 72.1 | 91.3 | 61.70 | 66.40 | 41.4 | 23 | 1.60 | 2.89 |
Zr | 164 | 166 | 220 | 44 | 64.6 | 167 | 150 | 521 | 110 | 82.50 | 168.91 | 89.5 | 36 | 1.89 | 4.69 |
La | 22.80 | 52.60 | 27.40 | 4.48 | 12.10 | 31.10 | 29.80 | 85.5 | 25.50 | 16.90 | 30.82 | 22.5 | 11 | 1.37 | 2.80 |
Ce | 50.00 | 99.10 | 55.40 | 7.22 | 27.60 | 58.10 | 55.00 | 146 | 48.30 | 31.70 | 57.84 | 46.7 | 23 | 1.24 | 2.51 |
Pr | 5.93 | 12.80 | 6.65 | 0.84 | 3.54 | 7.39 | 7.59 | 19.1 | 6.28 | 4.23 | 7.44 | 6.42 | 3.5 | 1.16 | 2.12 |
Nd | 22.90 | 47.70 | 25.20 | 3.50 | 15.20 | 31.10 | 31.20 | 78.3 | 26.80 | 18.20 | 30.01 | 22.3 | 12 | 1.35 | 2.50 |
Sm | 4.16 | 9.16 | 4.82 | 0.85 | 3.16 | 6.18 | 5.81 | 14.3 | 4.74 | 4.00 | 5.72 | 4.07 | 2.0 | 1.40 | 2.86 |
Eu | 0.84 | 1.74 | 1.05 | 0.20 | 0.69 | 1.34 | 1.56 | 3.39 | 1.38 | 1.03 | 1.32 | 0.84 | 0.47 | 1.57 | 2.81 |
Gd | 3.23 | 8.63 | 5.42 | 0.95 | 2.62 | 4.92 | 5.20 | 11.1 | 4.58 | 3.82 | 5.05 | 4.65 | 2.7 | 1.09 | 1.87 |
Tb | 0.51 | 1.64 | 1.07 | 0.20 | 0.44 | 0.87 | 0.90 | 2 | 0.83 | 0.69 | 0.92 | 0.62 | 0.32 | 1.48 | 2.86 |
Dy | 2.52 | 8.47 | 6.50 | 1.43 | 2.36 | 4.80 | 4.65 | 11.5 | 4.35 | 3.85 | 5.04 | 3.74 | 2.1 | 1.35 | 2.40 |
Y | 11.00 | 49.30 | 46.00 | 11.2 | 13.2 | 24.7 | 22.7 | 55.3 | 25.4 | 19.1 | 27.79 | 18.2 | 8.4 | 1.53 | 3.31 |
Ho | 0.45 | 1.62 | 1.47 | 0.32 | 0.43 | 0.82 | 0.85 | 2.18 | 0.83 | 0.64 | 0.96 | 0.96 | 0.54 | 1.00 | 1.78 |
Er | 1.22 | 4.69 | 4.40 | 0.99 | 1.25 | 2.48 | 2.22 | 5.94 | 2.26 | 1.56 | 2.70 | 1.79 | 0.93 | 1.51 | 2.90 |
Tm | 0.21 | 0.82 | 0.72 | 0.16 | 0.21 | 0.38 | 0.28 | 0.92 | 0.37 | 0.26 | 0.43 | 0.64 | 0.31 | 0.68 | 1.40 |
Yb | 1.44 | 4.98 | 4.62 | 0.91 | 1.29 | 2.47 | 2.03 | 5.85 | 1.97 | 1.47 | 2.70 | 2.08 | 1.0 | 1.30 | 2.70 |
Lu | 0.22 | 0.80 | 0.74 | 0.13 | 0.18 | 0.33 | 0.36 | 0.92 | 0.36 | 0.25 | 0.43 | 0.38 | 0.20 | 1.13 | 2.15 |
∑REY | 127.43 | 304.05 | 191.46 | 33.38 | 84.26 | 176.98 | 170.15 | 442.30 | 153.95 | 107.70 | 179.17 | 135.89 | 68.47 | 1.32 | 2.62 |
K2O c | 0.313 | 0.395 | 0.127 | 0.027 | 0.044 | 0.087 | 0.098 | 0.607 | 0.081 | 0.052 | — | — | — | — | — |
Sample | LaN | SmN | GdN | LuN | EuN | CeN | PrN | δEu | δCe | δCeanom |
---|---|---|---|---|---|---|---|---|---|---|
C3-1 | 71.25 | 20.80 | 10.42 | 7.06 | 11.47 | 53.19 | 49.42 | 0.78 | 0.90 | −0.013 |
C3-3 | 164.38 | 45.80 | 27.84 | 25.90 | 23.84 | 105.43 | 106.67 | 0.67 | 0.80 | −0.065 |
C3-5 | 85.63 | 24.10 | 17.48 | 23.74 | 14.38 | 58.94 | 55.42 | 0.70 | 0.86 | −0.036 |
C3-6 | 14.00 | 4.27 | 3.06 | 4.26 | 2.70 | 7.68 | 7.03 | 0.75 | 0.77 | −0.114 |
C3-7 | 37.81 | 15.80 | 8.45 | 5.94 | 9.38 | 29.36 | 29.50 | 0.81 | 0.88 | −0.031 |
C3-8 | 97.19 | 30.90 | 15.87 | 10.65 | 18.36 | 61.81 | 61.58 | 0.83 | 0.90 | −0.082 |
C3-9 | 93.13 | 29.05 | 16.77 | 11.68 | 21.37 | 58.51 | 63.25 | 0.97 | 0.76 | −0.094 |
C3-10 | 267.19 | 71.50 | 35.81 | 29.74 | 46.44 | 155.32 | 159.17 | 0.92 | 0.75 | −0.109 |
C3-11 | 79.69 | 23.70 | 14.77 | 11.65 | 18.90 | 51.38 | 52.33 | 1.01 | 0.80 | −0.084 |
C3-12 | 52.81 | 20.00 | 12.32 | 7.97 | 14.11 | 33.72 | 35.25 | 0.90 | 0.78 | −0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shao, L.; Wang, X. The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China. Processes 2023, 11, 2936. https://doi.org/10.3390/pr11102936
Wang J, Shao L, Wang X. The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China. Processes. 2023; 11(10):2936. https://doi.org/10.3390/pr11102936
Chicago/Turabian StyleWang, Juan, Longyi Shao, and Xuetian Wang. 2023. "The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China" Processes 11, no. 10: 2936. https://doi.org/10.3390/pr11102936
APA StyleWang, J., Shao, L., & Wang, X. (2023). The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China. Processes, 11(10), 2936. https://doi.org/10.3390/pr11102936