Microparameters Calibration for Discrete Element Method Based on Gaussian Processes Response Surface Methodology
Abstract
:1. Introduction
2. Gaussian Process Theory
2.1. Gaussian Process Model
2.2. Selection of Covariance Function
2.3. Solution of the Hyperparameter
3. Selection of Parameters
3.1. Selection of Microparameters
3.2. Range Determination of Microparameters
3.3. Selection of Macroparameters
3.4. Discussion
4. Parameter Calibration Process
4.1. Generation of Training Dataset for Microparameters
4.2. Generation of Training Dataset for Macroparameters
4.3. Establishment of GP Response Surface and Calibration Process of Microparameters
4.4. Experimental Validation of Calibrated Microparameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, J.; Jiang, Q.; Li, S.J.; Zhang, Y.L.; Shi, Y.E. Numerical Study of Anisotropic Weakening Mechanism and Degree of Non-persistent Open Joint Set on Rock Strength with Particle Flow Code. KSCE J. Civ. Eng. 2020, 24, 988–1009. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, Z.; Long, Y.; He, Q.; Zhang, H. Investigating the Mechanism of Continuous-Discrete Coupled Destabilization of Roadway-Surrounding Rocks in Weakly Cemented Strata under Varying Levels of Moisture Content. Processes 2023, 11, 2556. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Zhang, Z.; Wang, W.; Shu, J.; Chen, Y.; Ning, J.; Jiang, L. Investigating the Influence of Joint Angles on Rock Mechanical Behavior of Rock Mass Using Two-Dimensional and Three-Dimensional Numerical Models. Processes 2023, 11, 1407. [Google Scholar] [CrossRef]
- Feng, F.; Chen, S.J.; Wang, Y.J.; Huang, W.P.; Han, Z.Y. Cracking mechanism and strength criteria evaluation of granite afected by intermediate principal stresses subjected to unloading stress state. Int. J. Rock Mech. Min. Sci. 2021, 143, 104783. [Google Scholar] [CrossRef]
- Chen, S.J.; Feng, F.; Wang, Y.J.; Li, D.Y.; Huang, W.P.; Zhao, X.D.; Jiang, N. Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in-situ stress. J. Cent. South Univ. 2020, 27, 2864. [Google Scholar] [CrossRef]
- Wan, H.P.; Ren, W.X.; Wang, N.B. A Gaussian Process Model Based Global Sensitivity Analysis Approach for Parameter Selection and Sampling Methods. J. Vib. Eng. 2015, 28, 714–720. [Google Scholar]
- Zhu, X.H.; Liu, W.J.; He, X.Q. The Investigation of Rock Indentation Simulation Based on Discrete Element Method. KSCE J. Civ. Eng. 2017, 21, 1201–1212. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhang, C.S.; Zhao, X.D. Application of Similitude Rules in Calibrating Microparameters of Particle Mechanics Models. KSCE J. Civ. Eng. 2018, 22, 3791–3801. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Chen, L.; Lu, P.P.; Liu, W.B. Discussion on Failure Mechanism and Strength Criterion of Sandstone Based on Particle Discrete Element Method. KSCE J. Civ. Eng. 2021, 25, 2314–2333. [Google Scholar] [CrossRef]
- Ding, F.; Song, L.; Yue, F. Study on Mechanical Properties of Cement-Improved Frozen Soil under Uniaxial Compression Based on Discrete Element Method. Processes 2022, 10, 324. [Google Scholar] [CrossRef]
- Gu, Y.; Song, L.; Zhang, L.; Wang, X.; Zhao, Z. The Fracture and Energy of Coal Evolution under Thermo-Mechanical Coupling via a Particle Flow Simulation. Processes 2022, 10, 2370. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, T.; Wang, Y.; Ma, F.; Zhao, C.; Li, X. Optimal Discrete Element Parameters for Black Soil Based on Multi-Objective Total Evaluation Normalized-Response Surface Method. Processes 2023, 11, 2422. [Google Scholar] [CrossRef]
- Wu, S.C.; Xu, X.L. A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model. Rock Mech. Rock Eng. 2016, 49, 1813–1830. [Google Scholar] [CrossRef]
- Feng, F.; Chen, S.J.; Han, Z.Y.; Golsanami, N.; Liang, P.; Xie, Z.W. Influence of moisture content and intermediate principal stress on cracking behavior of sandstone subjected to true triaxial unloading conditions. Eng. Fract. Mech. 2023, 284, 109265. [Google Scholar] [CrossRef]
- Castro-filgueira, U.; Alejano, L.R.; Arzúa, J.; Ivars, D.M. Sensitivity Analysis of the Micro-parameters Used in a PFC Analysis Towards the Mechanical Properties of Rocks. Procedia Eng. 2017, 191, 488–495. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Sheikhpourkhani, A.M.; Mansouri, H. Flat-joint Model to Reproduce the Mechanical Behaviour of Intact Rocks. Eur. J. Environ. Civ. Eng. 2019, 1, 1427–1448. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A Bonded-Particle Model for Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Coetzee, C.J.; Els, D.N.J. Calibration of Discrete Element Parameters and the Modelling of Silo Discharge and Bucket Filling. Comput. Electron. Agric. 2009, 65, 198–212. [Google Scholar] [CrossRef]
- Wang, Y.N.; Tonon, F. Calibration of a Discrete Element Model for Intact Rock up to Its Peak Strength. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 447–469. [Google Scholar] [CrossRef]
- Yoon, J. Application of Experimental Design and Optimization to PFC Model Calibration in Uniaxial Compression Simulation. Int. J. Rock Mech. Min. Sci. 2007, 44, 871–889. [Google Scholar] [CrossRef]
- Chen, P.Y. Effects of Microparameters on Macroparameters of Flat-jointed Bonded-particle Materials and Suggestions on Trial-and-error Method. Geotech. Geol. Eng. 2017, 35, 663–677. [Google Scholar] [CrossRef]
- Deng, S.X.; Zheng, Y.L.; Feng, L.P.; Zhu, P.Y.; Ni, Y. Application of Design of Experiments in Microscopic Parameter Calibration for Hard Rocks of PFC3D Model. Chin. J. Geotech. Eng. 2019, 41, 655–664. [Google Scholar]
- Sun, W.; Wu, S.C.; Cheng, Z.Q.; Xiong, L.F.; Wang, R.P. Interaction Effects and an Optimization Study of the Microparameters of the Flat-Joint Model Using the Plackett-Burman Design and Response Surface Methodology. Arab. J. Geosci. 2020, 13, 53. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006; pp. 28–35. [Google Scholar]
- Lu, P.Z.; Xu, Z.J.; Chen, Y.R.; Zhou, Y.T. Prediction Method of Bridge Static Load Test Results Based on Kriging Model. Eng. Struct. 2020, 214, 110641. [Google Scholar] [CrossRef]
- Ren, W.X.; Chen, H.B. Finite Element Model Updating in Structural Dynamics by Using the Response Surface Method. Eng. Struct. 2010, 32, 2455–2465. [Google Scholar] [CrossRef]
- Wang, J.M. Intelligent Analysis and Prediction of Mine Slope Deformation Monitoring Data Based on Gaussian Process. Surv. Mapp. Press 2017, 46, 1206. [Google Scholar]
- Wan, H.P.; Ren, W.X. Parameter Selection in Finite Element Model Updating by Global Sensitivity Analysis Using Gaussian Process Metamodel. J. Struct. Eng. 2005, 141, 04014164. [Google Scholar] [CrossRef]
- Wan, H.P.; Ren, W.X. Stochastic Model Updating Utilizing Bayesian Approach and Gaussian Process Model. Mech. Syst. Signal Process. 2016, 70–71, 245–268. [Google Scholar] [CrossRef]
- Golub, G.H.; Van, L.C.F. Matrix Computations; The Johns Hopkins University Press: Baltimore, MD, USA, 2013; pp. 59–72. [Google Scholar]
- Meng, Q.B.; Liu, J.F.; Ren, L.; Pu, H.; Chen, Y.L. Experimental Study on Rock Strength and Deformation Characteristics under Triaxial Cyclic Loading and Unloading Conditions. Rock Mech. Rock Eng. 2021, 54, 777–797. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: New York, NY, USA, 1995; pp. 103–125. [Google Scholar]
Parameters of the Particles | Parameters of the Parallel Bonds |
---|---|
Modulus of the particles: | Modulus of parallel bonds: |
Ratio of normal to tangential stiffness of the particles: | Ratio of normal to tangential stiffness of parallel bonds: |
Friction coefficient of the particles: | Average value of normal strength of parallel bonds: |
Average value of tangential strength of parallel bonds: | |
Radius increase factor of parallel bonds: |
No. | Input Parameters: (UD Results) | Output Parameters: (Numerical Calculation Results) | ||||||
---|---|---|---|---|---|---|---|---|
/GPa | /MPa | /MPa | /GPa | /MPa | /MPa | |||
1 | 48.09 | 1.001 | 33.74 | 33.74 | 0.55 | 70.24 | 55.47 | 4.91 |
2 | 48.09 | 1.183 | 24.10 | 43.38 | 0.75 | 71.82 | 56.83 | 4.13 |
3 | 75.57 | 1.001 | 33.74 | 62.66 | 0.55 | 126.61 | 81.15 | 4.51 |
4 | 103.05 | 1.183 | 72.30 | 43.38 | 0.75 | 201.37 | 79.33 | 4.82 |
5 | 48.09 | 0.637 | 33.74 | 53.02 | 0.35 | 68.36 | 68.59 | 5.72 |
6 | 89.31 | 0.455 | 72.30 | 62.66 | 0.55 | 149.98 | 100.11 | 4.91 |
7 | 103.05 | 1.183 | 33.74 | 72.30 | 0.25 | 201.37 | 79.29 | 4.81 |
8 | 61.83 | 0.637 | 53.02 | 33.74 | 0.55 | 61.44 | 56.06 | 4.62 |
9 | 61.83 | 1.183 | 43.38 | 24.10 | 0.35 | 74.93 | 45.05 | 4.13 |
10 | 48.09 | 0.637 | 53.02 | 72.30 | 0.75 | 68.36 | 107.37 | 5.71 |
11 | 75.57 | 0.455 | 33.74 | 24.10 | 0.75 | 67.51 | 38.31 | 4.73 |
12 | 89.31 | 1.365 | 53.02 | 53.02 | 0.55 | 131.96 | 90.60 | 5.31 |
13 | 103.05 | 0.819 | 43.38 | 43.38 | 0.45 | 153.37 | 71.44 | 4.87 |
14 | 34.35 | 0.455 | 62.66 | 43.38 | 0.45 | 43.28 | 70.68 | 5.01 |
15 | 103.05 | 0.637 | 24.10 | 53.02 | 0.65 | 159.84 | 61.31 | 8.02 |
16 | 34.35 | 0.819 | 72.30 | 24.10 | 0.65 | 48.75 | 43.35 | 3.81 |
17 | 34.35 | 1.365 | 43.38 | 72.30 | 0.65 | 66.07 | 88.60 | 3.72 |
18 | 89.31 | 1.001 | 53.02 | 33.74 | 0.25 | 131.20 | 59.50 | 4.71 |
19 | 48.09 | 1.365 | 72.30 | 53.02 | 0.25 | 82.30 | 96.79 | 4.11 |
20 | 34.35 | 1.001 | 53.02 | 62.66 | 0.35 | 54.79 | 100.42 | 5.21 |
21 | 75.57 | 0.455 | 43.38 | 43.38 | 0.25 | 67.51 | 66.88 | 4.72 |
22 | 61.83 | 1.183 | 62.66 | 62.66 | 0.45 | 74.93 | 110.14 | 4.14 |
23 | 89.31 | 0.819 | 43.38 | 62.66 | 0.75 | 106.06 | 93.50 | 4.18 |
24 | 75.57 | 0.819 | 72.30 | 72.30 | 0.35 | 133.63 | 112.27 | 4.33 |
25 | 61.83 | 1.001 | 62.66 | 53.02 | 0.65 | 77.88 | 91.54 | 4.45 |
26 | 75.57 | 1.365 | 62.66 | 33.74 | 0.65 | 116.83 | 64.21 | 4.61 |
27 | 89.31 | 1.365 | 24.10 | 24.10 | 0.45 | 131.96 | 43.19 | 5.31 |
28 | 61.83 | 0.455 | 24.10 | 72.30 | 0.45 | 67.50 | 69.92 | 4.72 |
29 | 34.35 | 0.819 | 24.10 | 33.74 | 0.25 | 48.75 | 51.10 | 3.82 |
30 | 103.05 | 0.637 | 62.66 | 24.10 | 0.35 | 158.48 | 40.55 | 11.41 |
/GPa | /MPa | /MPa |
---|---|---|
66.1 | 63.9 | 3.8 |
/GPa | /MPa | /MPa | ||
---|---|---|---|---|
45.72 | 0.94 | 44.83 | 43.37 | 0.497 |
/GPa | /MPa | /MPa | |
---|---|---|---|
Experimental values | 66.1 | 63.9 | 3.8 |
Calculated values | 62.8 | 68.9 | 3.9 |
Relative error | 5.3% | −7.8% | −2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Chang, W.; Li, Y.; Wang, K.; Fan, D.; Zhao, L. Microparameters Calibration for Discrete Element Method Based on Gaussian Processes Response Surface Methodology. Processes 2023, 11, 2944. https://doi.org/10.3390/pr11102944
Jin Z, Chang W, Li Y, Wang K, Fan D, Zhao L. Microparameters Calibration for Discrete Element Method Based on Gaussian Processes Response Surface Methodology. Processes. 2023; 11(10):2944. https://doi.org/10.3390/pr11102944
Chicago/Turabian StyleJin, Zhihao, Weiche Chang, Yuan Li, Kezhong Wang, Dongjue Fan, and Liang Zhao. 2023. "Microparameters Calibration for Discrete Element Method Based on Gaussian Processes Response Surface Methodology" Processes 11, no. 10: 2944. https://doi.org/10.3390/pr11102944
APA StyleJin, Z., Chang, W., Li, Y., Wang, K., Fan, D., & Zhao, L. (2023). Microparameters Calibration for Discrete Element Method Based on Gaussian Processes Response Surface Methodology. Processes, 11(10), 2944. https://doi.org/10.3390/pr11102944