Comprehensive Analysis of Phenolic Compounds, Carotenoids, and Antioxidant Activities in Lactuca sativa var. longifolia Cultivated in a Smart Farm System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of SAM and CAM
2.3. Instruments and Reagents
2.4. ABTS+ Antioxidant Activity
2.5. DPPH Antioxidant Activity
2.6. Analysis of the Total Polyphenol and Total Flavonoid Content
2.7. Sample Preparation and HPLC Analysis for Phenolic Compounds
2.8. Sample Preparation and HPLC Analysis for Carotenoids
2.9. Calibration Curves
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osborne, R. Ancient Greek agriculture. Class. Rev. 1991, 42, 103–105. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Joly, A.; Junge, R.; Bardocz, T. Aquaponics business in Europe: Some legal obstacles and solutions. Ecocycles 2015, 1, 3–5. [Google Scholar] [CrossRef]
- Lohchab, V.; Kumar, M.; Suryan, G.; Gautam, V.; Das, R.K. A review of IoT based smart farm monitoring. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1620–1625. [Google Scholar]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. CRC Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Gowda, M.; Shreyas, K.S.; Nandini. Smart floating agriculture: The future is here. J. Emerg. Technol. 2019, 6, 970–976. [Google Scholar]
- Jaiganesh, S.; Gunaseelan, K.; Ellappan, V. IOT agriculture to improve food and farming technology. In Proceedings of the 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Mallasamudram, India, 3–4 March 2017; pp. 260–266. [Google Scholar]
- Prathibha, S.R.; Anupama, H.; Jyothi, M.P. IOT based monitoring system in smart agriculture. In Proceedings of the 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, 16–17 March 2017; pp. 81–84. [Google Scholar]
- Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IoT based hydroponics system using deep neural networks. Comput. Electron. Agric. 2018, 155, 473–486. [Google Scholar] [CrossRef]
- Atkin, K.; Nichols, M.A. Organic hydroponics. SPSCC 2003, 648, 121–127. [Google Scholar] [CrossRef]
- Caria, M.; Schudrowitz, J.; Jukan, A.; Kemper, N. Smart farm computing systems for animal welfare monitoring. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 152–157. [Google Scholar]
- van Os, E.A.; Gieling, T.H.; Lieth, J.H. Technical equipment in soilless production systems. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 587–635. [Google Scholar]
- Cooper, A. Nutrient Film Technique. In The ABC of NFT; Grower Books: London, UK, 1979. [Google Scholar]
- Jensen, M.H.; Collins, W.L. Hydroponic vegetable production. Hortic. Rev. 1985, 7, 483–558. [Google Scholar]
- Bailey, D.S.; Rakocy, J.E.; Cole, W.M.; Shultz, K.A.; St-Croix, U. Economic analysis of a commercial-scale aquaponic system for the production of tilapia and lettuce. In Proceedings of the Fourth International Symposium on Tilapia in Aquaculture, Orlando, FL, USA, 9–12 November 1997; pp. 603–612. [Google Scholar]
- Tokunaga, K.; Tamaru, C.; Ako, H.; Leung, P. Economics of small-scale commercial aquaponics in Hawaii. J. World Aquacult. Soc. 2015, 46, 20–32. [Google Scholar] [CrossRef]
- Knaus, U.; Palm, H.W. Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 466, 51–63. [Google Scholar] [CrossRef]
- de Vries, I.M. Origin and domestication of Lactuca sativa L. Gen. Res. Crop Evol. 1997, 44, 165–174. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, S.H.; Asamenew, G.; Lee, M.K.; Lee, S.; Park, J.J.; Choi, Y.; Lee, S.H. Study on phenolic compounds in lettuce samples cultivated from Korea using UPLC-DAD-QToF/MS. Korean J. Food Nutr. 2019, 32, 717–729. [Google Scholar]
- Heo, J.C.; Park, J.Y.; An, S.M.; Lee, J.M.; Tun, C.Y.; Shin, H.M.; Kwon, T.K.; Lee, S.H. Antioxidant and anti-tumor activities of crude extracts by Gastrodia elata Blume. Korean J. Food Sci. Technol. 2006, 13, 83–87. [Google Scholar]
- Choi, Y.M.; Kim, M.H.; Shin, J.J.; Park, J.M.; Lee, J.S. The antioxidant activities of the some commercial teas. Korean Soc. Food Sci. Nutr. 2003, 32, 723–727. [Google Scholar]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energ. Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Mayer, A.M.; Harel, E. Polyphenol oxidases in plants. Phytochemistry 1979, 18, 193–215. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Cho, J.H.; Yeob, S.J.; Han, J.G.; Lee, K.H.; Park, H.S. Characterization of the morphology and antioxidant content of shiitake cultivated in smart farm system. J. Mushrooms 2017, 15, 206–209. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Xu, X.; Syed, T.N.; Chandio, F.A.; Jing, Z.; Buttar, N.A. Effects of various aeroponic atomizers (droplet sizes) on growth, polyphenol content, and antioxidant activity of leaf lettuce (Lactuca sativa L.). Trans. ASABE 2019, 62, 1475–1487. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil, M.I.; Castaner, M.; Tomas-Barberan, F.A. Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J. Agric. Food Chem. 1997, 45, 4249–4254. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem. 2008, 107, 1173–1179. [Google Scholar] [CrossRef]
- Mulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.L.; Nair, M.G. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306. [Google Scholar] [CrossRef]
- Andrade, M.F.; Alves, L.S.; Machado, B.C.; Souza, M.A.; Castro, R.N.; Almeida, C.D.S. Chemical and organic fertilizer: The effect on apiin production by Petroselinum crispum var. neapolitanum Danert. J. Med. Plant Res. 2021, 15, 125–132. [Google Scholar]
- Terahara, N. Flavonoids in foods: A review. Nat. Prod. Commun. 2015, 10, 521–528. [Google Scholar] [CrossRef]
- Caspersen, S.; Alsanius, B.W.; Sundin, P.; Jensen, P. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol. Biochem. 2000, 32, 1063–1070. [Google Scholar] [CrossRef]
- Cruz, R.; Baptista, P.; Cunha, S.; Pereira, J.A.; Casal, S. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules 2012, 17, 1535–1547. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Kang, M.H.; Cho, C.S.; Kim, Z.S.; Chung, H.K.; Min, K.S.; Park, C.G.; Park, H.W. Antioxidative activities of ethanol extract prepared from leaves, seed, branch and aerial part of Crotalaria sessiflora L. Korean J. Food Sci. Technol. 2002, 34, 1098–1102. [Google Scholar]
- Yu, M.H.; Im, H.G.; Lee, H.J.; Ji, Y.J.; Lee, I.S. Components and their antioxidative activities of methanol extracts from sarcocarp and seed of Zyzypus jujuba var. inermis Rehder. Korean J. Food Sci. Technol. 2006, 38, 128–134. [Google Scholar]
- Zhang, L.Y.; Cosma, G.; Gardner, H.; Vallyathan, V.; Castranova, V. Effect of chlorogenic acid on hydroxyl radical. Mol. Cell Biochem. 2003, 247, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Khachik, F.; Goli, M.B.; Beecher, G.R.; Holden, J.; Lusby, W.R.; Tenorio, M.D.; Barrera, M.R. Effect of food preparation on qualitative and quantitative distribution of major carotenoid constituents of tomatoes and several green vegetables. J. Agric. Food Chem. 1992, 40, 390–398. [Google Scholar] [CrossRef]
- Park, W.S.; Kim, H.J.; Chung, H.J.; Chun, M.S.; Kim, S.T.; Seo, S.Y.; Lim, S.H.; Jeong, Y.H.; Chun, J.; An, S.K.; et al. Changes in carotenoid and anthocyanin contents, as well as antioxidant activity during storage of lettuce. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1325–1332. [Google Scholar] [CrossRef]
- Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef]
Compound | tR | Calibration Equation a | Correlation Factor, r2 b |
---|---|---|---|
Chlorogenic acid (1) | 15.9 | Y = 6.2014X − 6.4179 | 0.9998 |
Caffeic acid (2) | 19.1 | Y = 17.413X + 89.05 | 0.9998 |
Chicoric acid (3) | 23.0 | Y = 9.0481X + 52.711 | 0.9997 |
Ferulic acid (4) | 26.7 | Y = 16.742X − 46.292 | 0.9999 |
Apiin (5) | 29.0 | Y = 15.508X + 79.194 | 0.9998 |
Rosmarinic acid (6) | 30.8 | Y = 8.87X − 4.2388 | 1.0000 |
Lutein (7) | 33.2 | Y = 11.022X − 117.7 | 0.9996 |
β-Carotene (8) | 36.7 | Y = 2.1054X − 9.6781 | 0.9999 |
Compound | Content (mg/g Extract) | |
---|---|---|
SAM | CAM | |
Chlorogenic acid (1) | 0.34 ± 0.15 a | 0.31 ± 0.02 a |
Caffeic acid (2) | 0.20 ± 0.10 b | 0.41 ± 0.01 a |
Chicoric acid (3) | 0.51 ± 0.23 b | 0.63 ± 0.01 a |
Ferulic acid (4) | 2.91 ± 0.26 a | 0.66 ± 0.04 b |
Apiin (5) | trace | 0.25 ± 0.01 |
Rosmarinic acid (6) | 0.16 ± 0.01 a | 0.04 ± 0.00 b |
Lutein (7) | 1.00 ± 0.00 b | 1.44 ± 0.00 a |
β-Carotene (8) | 4.50 ± 0.02 b | 5.92 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; An, J.; Lee, H.-D.; Kim, W.J.; Lee, S.; Lee, S. Comprehensive Analysis of Phenolic Compounds, Carotenoids, and Antioxidant Activities in Lactuca sativa var. longifolia Cultivated in a Smart Farm System. Processes 2023, 11, 2993. https://doi.org/10.3390/pr11102993
Choi J, An J, Lee H-D, Kim WJ, Lee S, Lee S. Comprehensive Analysis of Phenolic Compounds, Carotenoids, and Antioxidant Activities in Lactuca sativa var. longifolia Cultivated in a Smart Farm System. Processes. 2023; 11(10):2993. https://doi.org/10.3390/pr11102993
Chicago/Turabian StyleChoi, Jungwon, Joonggeun An, Hak-Dong Lee, Woo Jung Kim, Sullim Lee, and Sanghyun Lee. 2023. "Comprehensive Analysis of Phenolic Compounds, Carotenoids, and Antioxidant Activities in Lactuca sativa var. longifolia Cultivated in a Smart Farm System" Processes 11, no. 10: 2993. https://doi.org/10.3390/pr11102993
APA StyleChoi, J., An, J., Lee, H. -D., Kim, W. J., Lee, S., & Lee, S. (2023). Comprehensive Analysis of Phenolic Compounds, Carotenoids, and Antioxidant Activities in Lactuca sativa var. longifolia Cultivated in a Smart Farm System. Processes, 11(10), 2993. https://doi.org/10.3390/pr11102993