Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum and Food Wastewater
2.2. Continuous Anaerobic Digestion
2.3. Analysis
2.4. DNA Extraction
2.5. Library Construction and Sequencing
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Composition of Anaerobic Digestate and Methane Production
3.2. Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laiq Ur Rehman, M.; Chang, C.C.; Li, W.; Ju, M. Anaerobic digestion. Water Environ. Fed. 2019, 91, 1253–1271. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, T.B.; Kim, C.H.; Yoon, Y.M. Effects of magnetite(Fe3O4) as electrical conductor of direct interspecies electron transfer on methane yield of food wastewater. J. Korea Org. Resour. Recycl. Assoc. 2023, 31, 15–26. [Google Scholar]
- Masahiko, M.; Nikhil, S.M.; Ashley, E.F.; Zarath, M.S.; Ludovic, G.; Amelia, E.R.; Camelia, R.; Derek, R.L. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. Am. Soc. Microbiol. 2011, 2, e00159-11. [Google Scholar]
- Rotaru, A.E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Baek, G.H.; Kim, J.A.; Kim, J.S.; Lee, C.S. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef]
- Kato, S.; Hashimoto, K.; Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 2012, 109, 10042–10046. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef]
- Zhuang, L.; Tang, J.; Wang, Y.; Hu, M.; Zhou, S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J. Hazard. Mater. 2015, 293, 37–45. [Google Scholar] [CrossRef]
- Moreno, A.G.S.; Cerón, N.E.; Hernández, V.A.; Eugenio, H.G.; Méndez, A.M.Á.; Solares, A.T. Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles. Renew. Energy 2020, 147, 204–213. [Google Scholar] [CrossRef]
- Corona, A.M.F.; Reza, A.O.; Moreno, D.A. Biostimulation of food waste anaerobic digestion supplemented with granular activated carbon, biochar and magnetite: A comparative analysis. Biomass Bioenergy 2021, 149, 106105. [Google Scholar]
- Li, D.; Song, L.; Fang, H.; Li, P.; Teng, Y.; Li, Y.Y.; Liu, R.; Niu, Q. Accelerated bio-methane production rate in thermophilic digestion of cardboard with appropriate biochar: Dose-response kinetic assays, hybrid synergistic mechanism, and microbial networks analysis. Bioresour. Technol. 2019, 290, 121782. [Google Scholar] [CrossRef] [PubMed]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Yusoff, F.M.; Toda, T. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012, 118, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Bio/Technol. 2008, 7, 173–180. [Google Scholar] [CrossRef]
- Akuzawa, M.; Hori, T.; Haruta, S.; Ueno, Y.; Ishii, M.; Igarashi, Y. Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb. Ecol. 2011, 61, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Kim, M.J.; Lee, J.Y.; Shin, J.H.; Shin, S.G.; Lee, J.Y. Effect of magnetite supplementation on mesophilic anaerobic digestion of phenol and benzoate: Methane production rate and microbial communities. Bioresour. Technol. 2022, 350, 126943. [Google Scholar] [CrossRef]
- Baek, G.H.; Jung, H.J.; Kim, J.A.; Lee, C.S. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent–magnetic separation and recycling of magnetite. Bioresour. Technol. 2017, 241, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Yoon, Y.M. Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization. Energies 2017, 10, 1876. [Google Scholar] [CrossRef]
- Sørensen, A.H.; Nielsen, W.M.; Ahring, B.K. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: The influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl. Microbiol. Biotechnol. 1991, 34, 823–827. [Google Scholar] [CrossRef]
- Rice, E.; Baird, R.; Eaton, A.; Clesceri, L. APHA (American Public Health Association): Standard Method for the Examination of Water and Wastewater; AWWA (American Water Works Association) and WEF (Water Environment Federation): Washington, DC, USA, 2012. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Khanal, S.K. Anaerobic Biotechnology for Bioenergy Production. Principles and Application; Willey and Blackwell: Ames, IA, USA, 2008; pp. 161–186. [Google Scholar]
- Van Velsen, A. Adaptation of methanogenic sludge to high ammonia-nitrogen concentrations. Water Res. 1979, 13, 995–999. [Google Scholar] [CrossRef]
- Lili, M.; Biró, G.; Sulyok, E.; Petis, M.; Borbély, J.; Tamás, J. Novel approach on the basis of FOS/TAC method. Analele Univ. Oradea Fasc. Protecţia Mediu. 2011, 17, 713–718. [Google Scholar]
- Baek, G.H.; Kim, J.A.; Lee, C.S. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Enhancement in process performance and stability. Bioresour. Technol. 2016, 222, 344–354. [Google Scholar] [CrossRef]
- Jing, Y.; Campanaro, S.; Kougias, P.; Treu, L.; Angelidaki, I.; Zhang, S.; Luo, G. Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms. Water Res. 2017, 126, 19–28. [Google Scholar] [CrossRef]
- Yin, Q.; Miao, J.; Li, B.; Wu, G. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon. Int. Biodeterior. Biodegrad. 2017, 119, 104–110. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Kim, S.Y.; Yoon, Y.M. Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes 2023, 11, 759. [Google Scholar] [CrossRef]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Bae, J.S.; Choi, O.K.; Ju, D.H.; Lee, J.M.; Sung, H.J.; Park, S.B.; Sang, B.I.; Um, Y.S. A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): Performance and microbial structure analysis using pyrosequencing. Process Biochem. 2014, 49, 301–308. [Google Scholar] [CrossRef]
- Jang, H.M.; Cho, H.U.; Park, S.K.; Ha, J.H.; Park, J.M. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 2014, 48, 1–14. [Google Scholar] [CrossRef]
- Lei, Y.; Wei, L.; Liu, T.; Xiao, Y.; Dang, Y.; Sun, D.; Holmes, D.E. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant. Chem. Eng. J. 2018, 348, 992–999. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, F.; Huang, W.; Lei, Z.; Zhang, Z.; Huang, W. Combined effect of zero valent iron and magnetite on semi-dry anaerobic digestion of swine manure. Bioresour. Technol. 2022, 346, 126438. [Google Scholar] [CrossRef] [PubMed]
Parameter | Inoculum | Food Wastewater | |
---|---|---|---|
pH | - | 7.97 (±0.00) | 3.43 (±0.15) |
TS (1) | mg/L | 42,900 (±299) | 100,721 (±2263) |
VS (2) | mg/L | 24,250 (±111) | 85,865 (±1992) |
TKN (3) | mg/L | 10,581 (±325) | 14,856 (±1423) |
NH4+-N (4) | mg/L | 8631 (±68) | 383 (±96) |
CODCr (5) | mg/L | 31,675 (±212) | 177,273 (±4775) |
SCODCr (6) | mg/L | 22,360 (±294) | 117,315 (±3671) |
Alkalinity | (as CaCO3) | 17,200 (±164) | - |
TVFAs (7) | (as acetate) | 1011 (±4) | 10,397 (±1550) |
Operation Step | pH | NH4+-N (1) | TVFAs (2) | CODCr (3) | FOS/TAC (4) | Mr (5) | Mp (6) | |
---|---|---|---|---|---|---|---|---|
(-) | (mg/L) | (mg/L) | (mg/L) | (-) | (%) | (L/day) | ||
Stage 1 (7) | Control | 7.71 | 3134 | 1289 b | 27,004 | 0.09 | - | 10.92 b |
T1 (10) | 7.73 | 3202 | 1781 a | 28,363 | 0.11 | 0 | 11.22 a | |
T2 (11) | 7.74 | 3225 | 1331 b | 28,262 | 0.08 | 0.97 | 11.21 a | |
SEM | 0.02 | 102 | 82 | 55 | - | - | 0.07 | |
p-value | <0.05 | <0.05 | <0.05 | <0.05 | - | - | <0.05 | |
Stage 2 (8) | Control | 7.79 | 3316 | 1384 a | 27,504 a | 0.10 | - | 10.50 c |
T1 | 7.80 | 3488 | 895 b | 26,266 b | 0.07 | 0 | 11.09 a | |
T2 | 7.80 | 3218 | 894 b | 26,673 b | 0.06 | 1.97 | 10.74 b | |
SEM | 0.01 | 161 | 111 | 427 | - | - | 0.04 | |
p-value | <0.05 | <0.05 | <0.05 | <0.05 | - | - | <0.05 | |
Stage 3 (9) | Control | 7.80 | 3130 ab | 1418 a | 27,309 a | 0.09 | - | 10.25 b |
T1 | 7.80 | 3002 b | 752 b | 24,965 b | 0.05 | 0 | 10.92 a | |
T2 | 7.79 | 3177 a | 750 b | 24,736 b | 0.04 | 3.06 | 10.33 b | |
SEM | 0.01 | 53 | 181 | 586 | - | - | 0.06 | |
p-value | <0.05 | <0.05 | <0.05 | <0.05 | - | - | <0.05 |
Phylum | Genus | Metabolic (1) | (%) | ||
---|---|---|---|---|---|
Control | T1 (4) | T2 (5) | |||
Candidatus Thermoplasmatota | Methanomassiliicoccus | HMs (2) | 9.78 | 1.93 | 1.98 |
Euryarchaeota | Methanoculleus | HMs | 87.99 | 38.89 | 72.37 |
Methanimicrococcus | HMs | 1.94 | 5.44 | 1.01 | |
Methanosarcina | AMs (3) | 0.00 | 53.32 | 23.82 | |
Others (6) | - | 0.29 | 0.42 | 0.83 |
Phylum | Genus | (%) | ||
---|---|---|---|---|
Control | T1 (1) | T2 (2) | ||
Atribacterota | Atribacter | 64.02 | 66.39 | 65.54 |
Bacillota | Capillibacterium | 5.73 | 4.53 | 5.54 |
Thermanaeromonas | 3.59 | 3.33 | 3.01 | |
Syntrophaceticus | 6.89 | 5.59 | 5.09 | |
Keratinibaculum | 2.42 | 2.54 | 2.36 | |
Others (3) | 17.35 | 17.62 | 18.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Bae, G.-S.; Lee, J.-H.; Yoon, Y.-M.; Kim, C.-H. Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor. Processes 2023, 11, 3001. https://doi.org/10.3390/pr11103001
Kim S-Y, Bae G-S, Lee J-H, Yoon Y-M, Kim C-H. Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor. Processes. 2023; 11(10):3001. https://doi.org/10.3390/pr11103001
Chicago/Turabian StyleKim, Sang-Yoon, Gui-Seck Bae, Jun-Hyeong Lee, Young-Man Yoon, and Chang-Hyun Kim. 2023. "Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor" Processes 11, no. 10: 3001. https://doi.org/10.3390/pr11103001
APA StyleKim, S. -Y., Bae, G. -S., Lee, J. -H., Yoon, Y. -M., & Kim, C. -H. (2023). Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor. Processes, 11(10), 3001. https://doi.org/10.3390/pr11103001