Training Tricks for Steel Microstructure Segmentation with Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Baseline Training Procedure
2.3. Training Tricks
2.3.1. Transfer Learning
2.3.2. Strong Data Augmentation
2.3.3. Enlarging the Receptive Field
2.4. Evaluation Indicators and Quantitative Analysis Process
3. Results
3.1. Baseline Training
3.2. Baseline Training Procedure with Training Trick
4. Discussion
4.1. Building the Optimal Segmentation Model
4.2. Comparison with the Traditional Binary Segmentation Method
5. Conclusions
- Transfer learning, strong data augmentation, and enlarging the receptive field can improve segmentation accuracy in most cases, improve the model’s ability to microstructure segmentation, and reduce the area of misclassified regions.
- Stacking multiple beneficial training techniques that improve segmentation accuracy leads to more accurate semantic segmentation models. Evaluation results demonstrate a 1–2.5% increase in mIoU for DeepLabV3Plus and PSPNet models across both datasets.
- To quantify the average radius and total number of the carbides of the test set, we applied optimal segmentation models. The established PSPNet model with strong data augmentation and receptive field enlargement achieved predicted deviations of 5.39 nm and 29 from the actual values, respectively. These results agree well with the ground truth. Additionally, the PSPNet model does not require manual input and generates more reasonable and accurate segmented images than the traditional binarization method.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeCost, B.L.; Lei, B.; Francis, T.; Holm, E.A. High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel. Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2019, 25, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Dehoff, R.; Russ, J. Practical Stereology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Martyushev, N.V.; Egorov, Y.P.; Utiev, M. Computer analysis of the material structure. In Proceedings of the 8th International Scientific and Practical Conference of Students, Post-Graduates and Young Scientists Modern Technique and Technologies, MTT 2002, Tomsk, Russia, 12 April 2002; pp. 159–161. [Google Scholar]
- Martyushev, N.V.; Egorov, Y.P. Determination of the signal strength with the computer analysis of the material structure. In Proceedings of the 9th International Scientific and Practical Conference of Students, Post-Graduates Modern Techniques and Technologies, MTT 2003, Tomsk, Russia, 7–11 April 2003; pp. 192–194. [Google Scholar]
- Stuckner, J.; Frei, K.; McCue, I.; Demkowicz, M.J.; Murayama, M. AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comput. Mater. Sci. 2017, 139, 320–329. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Shunmuga Perumal, P.; Wang, Y.; Sujasree, M.; Tulshain, S.; Bhutani, S.; Suriyah, M.K.; Kumar Raju, V.U. LaneScanNET: A deep-learning approach for simultaneous detection of obstacle-lane states for autonomous driving systems. Expert Syst. Appl. 2023, 233, 120970. [Google Scholar] [CrossRef]
- Hoque, S.; Xu, S.; Maiti, A.; Wei, Y.; Arafat, M.Y. Deep learning for 6D pose estimation of objects—A case study for autonomous driving. Expert Syst. Appl. 2023, 223, 119838. [Google Scholar] [CrossRef]
- Liang, G.; Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods Programs Biomed. 2020, 187, 104964. [Google Scholar] [CrossRef]
- Lee, C.; Liao, Z.; Li, Y.; Lai, Q.; Guo, Y.; Huang, J.; Li, S.; Wang, Y.; Shi, R. Placental MRI segmentation based on multi-receptive field and mixed attention separation mechanism. Comput. Methods Programs Biomed. 2023, 242, 107699. [Google Scholar] [CrossRef]
- Cui, W.; Zhang, Y.; Zhang, X.; Li, L.; Liou, F. Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network. Appl. Sci. 2020, 10, 545. [Google Scholar] [CrossRef]
- Ma, B.; Ban, X.; Huang, H.-Y.; Chen, Y.; Liu, W.; Zhi, Y. Deep Learning-Based Image Segmentation for Al-La Alloy Microscopic Images. Symmetry 2018, 10, 107. [Google Scholar] [CrossRef]
- Shen, C.; Wang, C.; Huang, M.; Xu, N.; van der Zwaag, S.; Xu, W. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning. J. Mater. Sci. Technol. 2021, 93, 191–204. [Google Scholar] [CrossRef]
- Breumier, S.; Martinez Ostormujof, T.; Frincu, B.; Gey, N.; Couturier, A.; Loukachenko, N.; Aba-perea, P.E.; Germain, L. Leveraging EBSD data by deep learning for bainite, ferrite and martensite segmentation. Mater. Charact. 2022, 186, 111805. [Google Scholar] [CrossRef]
- Zhang, Q.-S.; Zhu, S.-C. Visual interpretability for deep learning: A survey. Front. Inf. Technol. Electron. Eng. 2018, 19, 27–39. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Ma, J.; Hu, C.; Zhou, P.; Jin, F.; Wang, X.; Huang, H. Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation. Appl. Sci. 2023, 13, 6478. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Li, M.; Xie, X.; Zheng, M. OpenMMLab Semantic Segmentation Toolbox and Benchmark. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 1 October 2023).
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Stuckner, J.; Harder, B.; Smith, T.M. Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset. NPJ Comput. Mater. 2022, 8, 200. [Google Scholar] [CrossRef]
- Halevy, A.; Norvig, P.; Pereira, F. The Unreasonable Effectiveness of Data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 843–852. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Advances in Neural Information Processing Systems (NIPS) 27: 28th Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–11December 2014.
- Feng, S.; Zhou, H.; Dong, H. Application of deep transfer learning to predicting crystal structures of inorganic substances. Comput. Mater. Sci. 2021, 195, 110476. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Bartolini, I.; Moscato, V.; Postiglione, M.; Sperlì, G.; Vignali, A. Data augmentation via context similarity: An application to biomedical Named Entity Recognition. Inf. Syst. 2023, 119, 102291. [Google Scholar] [CrossRef]
- Devries, T.; Taylor, G.W.J.A. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M.J.C. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
Dataset | Method | Baseline | Transfer Learning Gain | Strong Data Augmentation Gain | Enlarging the Receptive Field Gain |
---|---|---|---|---|---|
Carbide | DeepLabV3Plus | 80.38 | +0.64 | +1.35 | −0.37 |
PSPNet | 81.14 | −1.06 | +1.19 | +0.15 | |
Ferrite | DeepLabV3Plus | 80.35 | +0.75 | −0.79 | +0.87 |
PSPNet | 80.32 | +0.68 | +0.25 | +0.24 | |
Average gain | +0.25 | +0.5 | +0.22 |
Method | Transfer Learning | Strong Data Augmentation | Enlarging the Receptive Field | IoUcarbide% | mIoU% |
---|---|---|---|---|---|
DeepLabV3Plus | 63.65 | 80.38 | |||
DeepLabV3Plus | ✓ | 64.7 | 81.02 | ||
DeepLabV3Plus | ✓ | ✓ | 67.88 | 82.81 |
Method | Transfer Learning | Strong Data Augmentation | Enlarging the Receptive Field | IoUcarbide% | mIoU% |
---|---|---|---|---|---|
PSPNet | 64.95 | 81.14 | |||
PSPNet | ✓ | 67.11 | 82.33 | ||
PSPNet | ✓ | ✓ | 67.52 | 82.5 |
Method | Transfer Learning | Strong Data Augmentation | Enlarging the Receptive Field | IoUferrite% | mIoU% |
---|---|---|---|---|---|
DeepLabV3Plus | 71.19 | 80.35 | |||
DeepLabV3Plus | ✓ | 72.32 | 81.1 | ||
DeepLabV3Plus | ✓ | ✓ | 73.75 | 82.26 |
Method | Transfer Learning | Strong Data Augmentation | Enlarging the Receptive Field | IoUferrite% | mIoU% |
---|---|---|---|---|---|
PSPNet | 70.83 | 80.32 | |||
PSPNet | ✓ | 72.06 | 81 | ||
PSPNet | ✓ | ✓ | 72.28 | 81.09 | |
PSPNet | ✓ | ✓ | ✓ | 73.1 | 81.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yu, Y. Training Tricks for Steel Microstructure Segmentation with Deep Learning. Processes 2023, 11, 3298. https://doi.org/10.3390/pr11123298
Ma X, Yu Y. Training Tricks for Steel Microstructure Segmentation with Deep Learning. Processes. 2023; 11(12):3298. https://doi.org/10.3390/pr11123298
Chicago/Turabian StyleMa, Xudong, and Yunhe Yu. 2023. "Training Tricks for Steel Microstructure Segmentation with Deep Learning" Processes 11, no. 12: 3298. https://doi.org/10.3390/pr11123298
APA StyleMa, X., & Yu, Y. (2023). Training Tricks for Steel Microstructure Segmentation with Deep Learning. Processes, 11(12), 3298. https://doi.org/10.3390/pr11123298