SPIONs Magnetophoresis and Separation via Permanent Magnets: Biomedical and Environmental Applications
Abstract
:1. Introduction
2. Principles of Magnetophoresis/Magnetic Separation
3. Magnetic Separation Process
3.1. High-Gradient Magnetic Separation (HGMS)
3.2. Low-Gradient Magnetic Separation (LGMS)
4. Applications of SPIONs
4.1. Drug Delivery
4.2. Cell Separation and Sorting
4.3. Environmental Remediation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.P.; Gómez-Pastora, J. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2023, e2304848. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Kaur, P.; Aliru, M.L.; Chadha, A.S.; Asea, A.; Krishnan, S. Hyperthermia using nanoparticles–promises and pitfalls. Int. J. Hyperth. 2016, 32, 76–88. [Google Scholar] [CrossRef]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar]
- Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327. [Google Scholar] [CrossRef]
- Wu, L.; Mendoza-Garcia, A.; Li, Q.; Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512. [Google Scholar] [CrossRef]
- Frenkel, J.; Doefman, J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 1930, 126, 274–275. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Bringas, E.; Lázaro-Díez, M.; Ramos-Vivas, J.; Ortiz, I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs). In Drug Delivery Systems; Stroeve, P., Mahmoudi, M., Eds.; World Scientific Publishing: Singapore, 2018; pp. 207–244. [Google Scholar]
- Yavuz, C.T.; Prakash, A.; Mayo, J.; Colvin, V.L. Magnetic separations: From steel plants to biotechnology. Chem. Eng. Sci. 2009, 64, 2510–2521. [Google Scholar] [CrossRef]
- Friedman, G.; Yellen, B. Magnetic separation, manipulation and assembly of solid phase in fluids. Curr. Opin. Colloid Interface Sci. 2005, 10, 158–166. [Google Scholar] [CrossRef]
- Gijs, M.A.; Lacharme, F.; Lehmann, U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 2010, 110, 1518–1563. [Google Scholar] [CrossRef] [PubMed]
- Hoshiar, A.K.; Le, T.-A.; Valdastri, P.; Yoon, J. Swarm of magnetic nanoparticles steering in multi-bifurcation vessels under fluid flow. J. Micro. Bio. Rob. 2020, 16, 137–145. [Google Scholar] [CrossRef]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320–6330. [Google Scholar] [CrossRef]
- Li, X.; Yue, R.; Guan, G.; Zhang, C.; Zhou, Y.; Song, G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. Exploration 2023, 3, 20220002. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017, 172, 16–31. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- Waifalkar, P.; Parit, S.; Chougale, A.; Sahoo, S.C.; Patil, P.; Patil, P. Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. J. Colloid Interface Sci. 2016, 482, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Yari, P.; Liang, S.; Chugh, V.K.; Rezaei, B.; Mostufa, S.; Krishna, V.D.; Saha, R.; Cheeran, M.C.-J.; Wang, J.-P.; Gómez-Pastora, J. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal. Chem. 2023, 42, 15419–15449. [Google Scholar] [CrossRef]
- Gaß, H.; Sarcletti, M.; Müller, L.; Hübner, S.; Yokosawa, T.; Park, H.; Przybilla, T.; Spiecker, E.; Halik, M. A Sustainable Method for Removal of the Full Range of Liquid and Solid Hydrocarbons from Water Including Up-and Recycling. Adv. Sci. 2023, 10, 2302495. [Google Scholar] [CrossRef]
- Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials 2010, 3, 2412–2446. [Google Scholar] [CrossRef]
- Mostufa, S.; Rezaei, B.; Yari, P.; Xu, K.; Gómez-Pastora, J.; Sun, J.; Shi, Z.; Wu, K. Giant Magnetoresistance Based Biosensors for Cancer Screening and Detection. ACS Appl. Bio Mater. 2023, 6, 4042–4059. [Google Scholar] [CrossRef]
- Richardson, O.W. A mechanical effect accompanying magnetization. Phys. Rev. 1908, 26, 248. [Google Scholar] [CrossRef]
- Stoner, E.C.; Wohlfarth, E. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 1948, 240, 599–642. [Google Scholar] [CrossRef]
- Zborowski, M.; Chalmers, J.J.; Lowrie, W.G. Magnetic Cell Manipulation and Sorting. In Microtechnology for Cell Manipulation and Sorting; Lee, W., Tseng, P., Di Carlo, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–55. [Google Scholar]
- De Las Cuevas, G.; Faraudo, J.; Camacho, J. Low-Gradient Magnetophoresis through Field-Induced Reversible Aggregation. J. Phys. Chem. C 2008, 112, 945–950. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Wu, X.; Sundar, N.; Alawi, J.; Nabar, G.; Winter, J.O.; Zborowski, M.; Chalmers, J.J. Self-assembly and sedimentation of 5 nm SPIONs using horizontal, high magnetic fields and gradients. Sep. Purif. Technol. 2020, 248, 117012. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.S.; Ahmad, Z.; Lim, J. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: Hydrodynamic effect. Soft Matter. 2015, 11, 6968–6980. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.S.; Ahmad, Z.; Camacho, J.; Faraudo, J.; Lim, J. Kinetics of low field gradient magnetophoresis in the presence of magnetically induced convection. J. Phys. Chem. C 2017, 121, 5389–5407. [Google Scholar] [CrossRef]
- Moeser, G.D.; Roach, K.A.; Green, W.H.; Alan Hatton, T.; Laibinis, P.E. High-gradient magnetic separation of coated magnetic nanoparticles. AlChE J. 2004, 50, 2835–2848. [Google Scholar] [CrossRef]
- Ge, W.; Encinas, A.; Araujo, E.; Song, S. Magnetic matrices used in high gradient magnetic separation (HGMS): A review. Results Phys. 2017, 7, 4278–4286. [Google Scholar] [CrossRef]
- Wu, X.; Gómez-Pastora, J.; Zborowski, M.; Chalmers, J. SPIONs self-assembly and magnetic sedimentation in quadrupole magnets: Gaining insight into the separation mechanisms. Sep. Purif. Technol. 2022, 280, 119786. [Google Scholar] [CrossRef] [PubMed]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytom. J. Int. Soc. Anal. Cytol. 1990, 11, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Podoynitsyn, S.N.; Sorokina, O.N.; Kovarski, A.L. High-gradient magnetic separation using ferromagnetic membrane. J. Magn. Magn. Mater. 2016, 397, 51–56. [Google Scholar] [CrossRef]
- González Fernández, C.; Gómez Pastora, J.; Basauri, A.; Fallanza, M.; Bringas, E.; Chalmers, J.J.; Ortiz, I. Continuous-flow separation of magnetic particles from biofluids: How does the microdevice geometry determine the separation performance? Sensors 2020, 20, 3030. [Google Scholar] [CrossRef]
- Zborowski, M.; Sun, L.; Moore, L.R.; Williams, P.S.; Chalmers, J.J. Continuous cell separation using novel magnetic quadrupole flow sorter. J. Magn. Magn. Mater. 1999, 194, 224–230. [Google Scholar] [CrossRef]
- Schaller, V.; Kräling, U.; Rusu, C.; Petersson, K.; Wipenmyr, J.; Krozer, A.; Wahnström, G.; Sanz-Velasco, A.; Enoksson, P.; Johansson, C. Motion of nanometer sized magnetic particles in a magnetic field gradient. J. Appl. Phys. 2008, 104, 093918. [Google Scholar] [CrossRef]
- Williams, P.S.; Zborowski, M.; Chalmers, J.J. Flow rate optimization for the quadrupole magnetic cell sorter. Anal. Chem. 1999, 71, 3799–3807. [Google Scholar] [CrossRef]
- Jing, Y.; Moore, L.R.; Williams, P.S.; Chalmers, J.J.; Farag, S.S.; Bolwell, B.; Zborowski, M. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol. Bioeng. 2007, 96, 1139–1154. [Google Scholar] [CrossRef]
- Moore, L.R.; Nehl, F.; Dorn, J.; Chalmers, J.J.; Zborowski, M. Open gradient magnetic red blood cell sorter evaluation on model cell mixtures. IEEE Trans. Magn. 2013, 49, 309–315. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Gómez-Pastora, J.; Bringas, E.; Zborowski, M.; Chalmers, J.J.; Ortiz, I. Recovery of magnetic catalysts: Advanced design for process intensification. Ind. Eng. Chem. Res. 2021, 60, 16780–16790. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.S.; Ahmad, Z.; Low, S.C.; Camacho, J.; Faraudo, J.; Lim, J. Unified View of Magnetic Nanoparticle Separation under Magnetophoresis. Langmuir 2020, 36, 8033–8055. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, I.; Bakhteeva, Y.; Zhakov, S.; Revvo, A.; Byzov, I.; Uimin, M.; Yermakov, A.; Mysik, A. Sedimentation and aggregation of magnetite nanoparticles in water by a gradient magnetic field. J. Nanopart. Res. 2013, 15, 2054. [Google Scholar] [CrossRef]
- Yeap, S.P.; Leong, S.S.; Ahmad, A.L.; Ooi, B.S.; Lim, J. On size fractionation of iron oxide nanoclusters by low magnetic field gradient. J. Phys. Chem. C 2014, 118, 24042–24054. [Google Scholar] [CrossRef]
- Bakhteeva, I.A.; Medvedeva, I.; Uimin, M.; Byzov, I.; Zhakov, S.; Yermakov, A.; Shchegoleva, N. Magnetic sedimentation and aggregation of Fe3O4@ SiO2 nanoparticles in water medium. Sep. Purif. Technol. 2016, 159, 35–42. [Google Scholar] [CrossRef]
- Lim, J.; Yeap, S.P.; Low, S.C. Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 2014, 123, 171–174. [Google Scholar] [CrossRef]
- Faraudo, J.; Camacho, J. Cooperative magnetophoresis of superparamagnetic colloids: Theoretical aspects. Colloid Polym. Sci. 2010, 288, 207–215. [Google Scholar] [CrossRef]
- Faraudo, J.; Andreu, J.S.; Calero, C.; Camacho, J. Predicting the Self-Assembly of Superparamagnetic Colloids under Magnetic Fields. Adv. Funct. Mater. 2016, 26, 3837–3858. [Google Scholar] [CrossRef]
- Andreu, J.; Camacho, J.; Faraudo, J.; Benelmekki, M.; Rebollo, C.; Martínez, L.M. Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys. Rev. E 2011, 84, 021402. [Google Scholar] [CrossRef]
- Alves, M.N.; Miró, M.; Breadmore, M.C.; Macka, M. Trends in analytical separations of magnetic (nano)particles. TrAC Trends Anal. Chem. 2019, 114, 89–97. [Google Scholar] [CrossRef]
- Furlani, E.P. Analysis of particle transport in a magnetophoretic microsystem. J. Appl. Phys. 2006, 99, 024912. [Google Scholar] [CrossRef]
- Pamme, N. On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 2012, 16, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Yeap, S.P.; Ahmad, A.L.; Ooi, B.S.; Lim, J. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 2012, 28, 14878–14891. [Google Scholar] [CrossRef]
- Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Chieh, D.C.J.; Lim, J. Magnetophoretic separation of Chlorella sp.: Role of cationic polymer binder. Process Saf. Environ. Prot. 2014, 92, 515–521. [Google Scholar] [CrossRef]
- Pamme, N.; Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 2006, 6, 974–980. [Google Scholar] [CrossRef]
- Tong, S.; Zhu, H.; Bao, G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today 2019, 31, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Aguilar, Z.P.; Yang, L.; Kuang, M.; Duan, H.; Xiong, Y.; Wei, H.; Wang, A. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 2011, 32, 9758–9765. [Google Scholar] [CrossRef]
- Lin, J.; Li, M.; Li, Y.; Chen, Q. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157: H7. J. Magn. Magn. Mater. 2015, 378, 206–213. [Google Scholar] [CrossRef]
- Leong, S.S.; Yeap, S.P.; Lim, J. Working principle and application of magnetic separation for biomedical diagnostic at high-and low-field gradients. Interface Focus 2016, 6, 20160048. [Google Scholar] [CrossRef]
- Ciannella, S.; Wu, X.; González-Fernández, C.; Rezaei, B.; Strayer, J.; Choe, H.; Wu, K.; Chalmers, J.; Gomez-Pastora, J. Kinetic and Parametric Analysis of the Separation of Ultra-Small, Aqueous Superparamagnetic Iron Oxide Nanoparticle Suspensions under Quadrupole Magnetic Fields. Micromachines 2023, 14, 2107. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef] [PubMed]
- Wagner, V.; Dullaart, A.; Bock, A.-K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006, 24, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.; Arrott, A.; Watson, J. Magnetism in medicine. J. Appl. Phys. 1960, 31, S404–S405. [Google Scholar] [CrossRef]
- Senyei, A.; Widder, K.; Czerlinski, G. Magnetic guidance of drug-carrying microspheres. J. Appl. Phys. 1978, 49, 3578–3583. [Google Scholar] [CrossRef]
- Senyei, A.E.; Widder, K.J.; Reich, S.D.; Gonczy, C. In vivo kinetics of magnetically targeted low-dose doxorubicin. J. Pharm. Sci. 1981, 70, 389–391. [Google Scholar] [CrossRef]
- Lübbe, A.S.; Bergemann, C.; Huhnt, W.; Fricke, T.; Riess, H.; Brock, J.W.; Huhn, D. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res. 1996, 56, 4694–4701. [Google Scholar]
- Nasongkla, N.; Bey, E.; Ren, J.; Ai, H.; Khemtong, C.; Guthi, J.S.; Chin, S.-F.; Sherry, A.D.; Boothman, D.A.; Gao, J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano. Lett. 2006, 6, 2427–2430. [Google Scholar] [CrossRef]
- Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 2005, 293, 483–496. [Google Scholar] [CrossRef]
- Lübbe, A.S.; Alexiou, C.; Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res. 2001, 95, 200–206. [Google Scholar] [CrossRef]
- Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007, 2, 23–39. [Google Scholar] [CrossRef]
- Santhosh, P.B.; Ulrih, N.P. Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Lett. 2013, 336, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ayubi, M.; Karimi, M.; Abdpour, S.; Rostamizadeh, K.; Parsa, M.; Zamani, M.; Saedi, A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Eng. C 2019, 104, 109810. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Agnihotri, S.; Roy, I. Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery. Int. J. Nanomed. 2018, 13, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Perillo, E.; Hervé-Aubert, K.; Allard-Vannier, E.; Falanga, A.; Galdiero, S.; Chourpa, I. Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. J. Colloid Interface Sci. 2017, 499, 209–217. [Google Scholar] [CrossRef]
- Zhang, W.; Taheri-Ledari, R.; Hajizadeh, Z.; Zolfaghari, E.; Ahghari, M.R.; Maleki, A.; Hamblin, M.R.; Tian, Y. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale 2020, 12, 3855–3870. [Google Scholar] [CrossRef]
- Qian, X.; Yin, R.; Gu, Y.; Zhang, H.; Zhang, W. Drug-attached magnetic nanoparticles: Locomotion control and in vivo biocompatibility. J. Phys. Conf. Ser. 2020, 1549, 032030. [Google Scholar] [CrossRef]
- Azizi, S.; Nosrati, H.; Danafar, H. Simple surface functionalization of magnetic nanoparticles with methotrexate-conjugated bovine serum albumin as a biocompatible drug delivery vehicle. Appl. Organomet. Chem. 2020, 34, e5479. [Google Scholar] [CrossRef]
- Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, H.K. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 2018, 76, 501–509. [Google Scholar] [CrossRef]
- Tom, G.; Philip, S.; Isaac, R.; Praseetha, P.; Jiji, S.; Asha, V. Preparation of an efficient and safe polymeric-magnetic nanoparticle delivery system for sorafenib in hepatocellular carcinoma. Life Sci. 2018, 206, 10–21. [Google Scholar] [CrossRef]
- Cohn, D.; Zarek, M.; Elyashiv, A.; Sbitan, M.A.; Sharma, V.; Ramanujan, R.V. Remotely triggered morphing behavior of additively manufactured thermoset polymer-magnetic nanoparticle composite structures. Smart Mater. Struct. 2021, 30, 045022. [Google Scholar] [CrossRef]
- Odintsov, B.; Chun, J.L.; Berry, S.E. Whole Body MRI and Fluorescent Microscopy for Detection of Stem Cells Labeled with Superparamagnetic Iron Oxide (SPIO) Nanoparticles and DiI Following Intramuscular and Systemic Delivery. In Imaging and Tracking Stem Cells: Methods and Protocols; Turksen, K., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 177–193. [Google Scholar]
- Petri-Fink, A.; Chastellain, M.; Juillerat-Jeanneret, L.; Ferrari, A.; Hofmann, H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005, 26, 2685–2694. [Google Scholar] [CrossRef] [PubMed]
- Shields Iv, C.W.; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [PubMed]
- Karampelas, I.H.; Gómez-Pastora, J. Novel approaches concerning the numerical modeling of particle and cell separation in microchannels: A review. Processes 2022, 10, 1226. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, B.; Kang, K.; Ma, S.; Sun, X.; Lan, F.; Yi, Q.; Wu, Y. Multifunctional luminescent immuno-magnetic nanoparticles: Toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells. J. Mater. Chem. B 2019, 7, 393–400. [Google Scholar] [CrossRef]
- Payer, P.; Röder, M.; Camara, O.; Pachmann, K. High depletion of breast cancer cells from the peripheral blood with the method of non-specific separation. Ecancermedicalscience 2020, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.; Asfia, S.; Kouchakzadeh, H.; Rahmandoust, M. Antibody-modified magnetic nanoparticles as specific high-efficient cell-separation agents. J. Biomed. Mater. Res. Part B 2020, 108, 2633–2642. [Google Scholar] [CrossRef] [PubMed]
- Unni, M.; Zhang, J.; George, T.J.; Segal, M.S.; Fan, Z.H.; Rinaldi, C. Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation. J. Colloid Interface Sci. 2020, 564, 204–215. [Google Scholar] [CrossRef]
- Rashid, Z.; Shokri, F.; Abbasi, A.; Khoobi, M.; Zarnani, A.-H. Surface modification and bioconjugation of anti-CD4 monoclonal antibody to magnetic nanoparticles as a highly efficient affinity adsorbent for positive selection of peripheral blood T CD4+ lymphocytes. Int. J. Biol. Macromol. 2020, 161, 729–737. [Google Scholar] [CrossRef]
- Cai, G.; Wang, S.; Zheng, L.; Lin, J. A fluidic device for immunomagnetic separation of foodborne bacteria using self-assembled magnetic nanoparticle chains. Micromachines 2018, 9, 624. [Google Scholar] [CrossRef]
- Sahoo, S.L.; Liu, C.-H.; Wu, W.-C. Lymphoma cell isolation using multifunctional magnetic nanoparticles: Antibody conjugation and characterization. RSC Adv. 2017, 7, 22468–22478. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Gan, Y.; Jiang, F.; Zhao, H.; Tan, J.; Yang, Y.Y.; Yuan, P.; Ding, X. Selective Capture, Separation, and Photothermal Inactivation of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Functional Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 20566–20575. [Google Scholar] [CrossRef] [PubMed]
- Rafeeq, H.; Hussain, A.; Ambreen, A.; Waqas, M.; Bilal, M.; Iqbal, H.M. Functionalized nanoparticles and their environmental remediation potential: A review. J. Nanostruct. Chem. 2022, 12, 1007–1031. [Google Scholar] [CrossRef]
- Tee, G.T.; Gok, X.Y.; Yong, W.F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022, 212, 113248. [Google Scholar] [CrossRef] [PubMed]
- Chahar, M.; Khaturia, S.; Singh, H.L.; Solanki, V.S.; Agarwal, N.; Sahoo, D.K.; Yadav, V.K.; Patel, A. Recent advances in the effective removal of hazardous pollutants from wastewater by using nanomaterials—A review. Front. Environ. Sci. 2023, 11, 1–24. [Google Scholar] [CrossRef]
- Sarcletti, M.; Park, H.; Wirth, J.; Englisch, S.; Eigen, A.; Drobek, D.; Vivod, D.; Friedrich, B.; Tietze, R.; Alexiou, C. The remediation of nano-/microplastics from water. Mater. Today 2021, 48, 38–46. [Google Scholar] [CrossRef]
- Kim, I.; Yang, H.-M.; Park, C.W.; Yoon, I.-H.; Sihn, Y. (Eds.) Environmental applications of magnetic nanoparticles. In Magnetic Nanoparticle-Based Hybrid Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 529–545. [Google Scholar]
- Doan, L. Modifying Superparamagnetic Iron Oxide Nanoparticles as Methylene Blue Adsorbents: A Review. ChemEngineering 2023, 7, 77. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 2017, 32, 111–117. [Google Scholar] [CrossRef]
- Leonel, A.G.; Mansur, A.A.P.; Mansur, H.S. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Res. 2021, 190, 116693. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Aboluwoye, C.O.; Oladimeji, Y.B.; Ashogbon, A.O.; Otemuyiwa, I.O. Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination 2008, 227, 190–203. [Google Scholar] [CrossRef]
- Lin, C.-I.; Wang, L.-H. Rate equations and isotherms for two adsorption models. J. Chin. Inst. Chem. Eng. 2008, 39, 579–585. [Google Scholar] [CrossRef]
- Hao, Y.-M.; Man, C.; Hu, Z.-B. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mater. 2010, 184, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, G.; Yang, M.; Guo, W.; Gao, H. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 2011, 65, 2887–2890. [Google Scholar] [CrossRef]
- Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8075–8109. [Google Scholar] [CrossRef]
- Abebe, B.; Murthy, H.A.; Amare, E. Summary on adsorption and photocatalysis for pollutant remediation: Mini review. J. Encapsul. Adsorpt. Sci. 2018, 8, 225–255. [Google Scholar] [CrossRef]
- Fang, G.-D.; Zhou, D.-M.; Dionysiou, D.D. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: Demonstration in the degradation of 2-chlorobiphenyl. J. Hazard. Mater. 2013, 250-251, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceram. Int. 2016, 42, 9–34. [Google Scholar] [CrossRef]
- Yassin, M.T.; Al-Otibi, F.O.; Al-Askar, A.A. Photocatalytic Removal of Crystal Violet Dye Utilizing Greenly Synthesized Iron Oxide Nanoparticles. Separations 2023, 10, 513. [Google Scholar] [CrossRef]
- Rao, A.M.; Suresh, D.; Sribalan, R.; Sandhya, G. Nano-Fe3O4-loaded chitosan salicylamide copper complex as a photocatalyst to degrade nitrophenols under the sunlight. Appl. Phys. A 2023, 129, 625. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Thakur, S. SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem. Eng. J. 2015, 280, 175–187. [Google Scholar] [CrossRef]
- Ahmad, I.; Aalam, G.; Amir, M.; Chakravarty, A.; Ali, S.W.; Ikram, S. Development of highly efficient magnetically recyclable Cu2+/Cu0 nano-photocatalyst and its enhanced catalytic performance for the degradation of organic contaminations. Sci. Total Environ. 2022, 846, 157154. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Fan, M.; Wang, Y.; Luo, G.; Fei, W. Magnetic titanium dioxide based nanomaterials: Synthesis, characteristics, and photocatalytic application in pollutant degradation. J. Mater. Chem. A 2015, 3, 17511–17524. [Google Scholar] [CrossRef]
- Upadhyay, P.; Moholkar, V.S.; Chakma, S. Chapter 9—Magnetic nanomaterials-based photocatalyst for wastewater treatment. In Handbook of Nanomaterials for Wastewater Treatment; Bhanvase, B., Sonawane, S., Pawade, V., Pandit, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 241–276. [Google Scholar]
- Gopalan Sibi, M.; Verma, D.; Kim, J. Magnetic core–shell nanocatalysts: Promising versatile catalysts for organic and photocatalytic reactions. Catal. Rev. Sci. Eng. 2020, 62, 163–311. [Google Scholar] [CrossRef]
- Sharma, R.K.; Solanki, K.; Dixit, R.; Sharma, S.; Dutta, S. Nanoengineered iron oxide-based sorbents for separation of various water pollutants: Current status, opportunities and future outlook. Environ. Sci. Water Res. Technol. 2021, 7, 818–860. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef]
- Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Zhu, M.; Diao, G. Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale 2011, 3, 2748–2767. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Mehrnia, M.R.; Homayoonfal, M. Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor. J. Membr. Sci. 2016, 520, 881–894. [Google Scholar] [CrossRef]
- Koyuncu, I.; Gul, B.Y.; Esmaeili, M.S.; Pekgenc, E.; Teber, O.O.; Tuncay, G.; Karimi, H.; Parvaz, S.; Maleki, A.; Vatanpour, V. Modification of PVDF membranes by incorporation Fe3O4@ Xanthan gum to improve anti-fouling, anti-bacterial, and separation performance. J. Environ. Chem. Eng. 2022, 10, 107784. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, C.-F.; Huang, Q.-L.; Liu, H.-L.; Hao, J.-Q.; Song, L. Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J. Membr. Sci. 2018, 548, 184–193. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, W.; Wang, J.; Tang, J.; Li, H.; Zhang, Y. Perfluorosulfonate ionomer membranes with improved through-plane proton conductivity fabricated under magnetic field. J. Membr. Sci. 2012, 423, 267–274. [Google Scholar] [CrossRef]
- Bhaduri, B.; Dixit, A.K.; Tripathi, K.M. Magnetic Nanoparticles: Application in the Removal of Next-Generation Pollutants from Wastewater. In New Trends in Emerging Environmental Contaminants; Singh, P., Agarwal, A.K., Gupta Maliyekkal, S.M., Eds.; Springer: Singapore, 2022; pp. 287–310. [Google Scholar]
- Ali, I.; Tan, X.; Li, J.; Peng, C.; Wan, P.; Naz, I.; Duan, Z.; Ruan, Y. Innovations in the Development of Promising Adsorbents for the Remediation of Microplastics and Nanoplastics—A Critical Review. Water Res. 2022, 230, 119526. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Lin, S.; Jiang, W.; Yu, X.; Zhang, L.; Zhao, W.; Sui, Q. Effect of aggregation behavior on microplastic removal by magnetic Fe3O4 nanoparticles. Sci. Total Environ. 2023, 898, 165431. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Gao, W.; Zhang, Y.; He, D. Removal of microplastics from water by magnetic nano-Fe3O4. Sci. Total Environ. 2022, 802, 149838. [Google Scholar] [CrossRef]
- Miranda Zoppas, F.; Sacco, N.; Soffietti, J.; Devard, A.; Akhter, F.; Marchesini, F.A. Catalytic approaches for the removal of microplastics from water: Recent advances and future opportunities. Chem. Eng. J. Adv. 2023, 16, 100529. [Google Scholar] [CrossRef]
- Staroń, P.; Kuciakowski, J.; Chwastowski, J. Biocomposite of hydrochar and Lindnera jadinii with magnetic properties for adsorptive removal of cadmium ions. J. Environ. Chem. Eng. 2023, 11, 110270. [Google Scholar] [CrossRef]
- Hou, M.; Wang, Z.; Zhang, J.; Yang, Y.; Li, Y.; Sun, T.; Luo, H.; Wan, J.; Chen, K. Fabrication of polyethyleneimine functionalized magnetite nanoparticles for recyclable recovery of fucoidan from aqueous solution. Colloids Surf. B 2023, 229, 113478. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, Y.; Gu, Y. Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. J. Hazard. Mater. 2022, 436, 129058. [Google Scholar] [CrossRef]
- Liu, F.; Hu, J.; Hu, B. Magnetic MXene-NH2 decorated with persimmon tannin for highly efficient elimination of U (VI) and Cr (VI) from aquatic environment. Int. J. Biol. Macromol. 2022, 219, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Taşcı, S.; Özgüven, A.; Yıldız, B. Multi-response/multi-step optimization of heterogeneous Fenton process with Fe3O4 catalyst for the treatment of landfill leachate. Water Air Soil. Pollut. 2021, 232, 275. [Google Scholar] [CrossRef]
- Akbas, Y.A.; Yusan, S.; Sert, S.; Aytas, S. Sorption of Ce (III) on magnetic/olive pomace nanocomposite: Isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 2021, 28, 56782–56794. [Google Scholar] [CrossRef] [PubMed]
- Mateus, G.A.P.; Dos Santos, T.R.T.; Sanches, I.S.; Silva, M.F.; de Andrade, M.B.; Paludo, M.P.; Gomes, R.G.; Bergamasco, R. Evaluation of a magnetic coagulant based on Fe(3)O(4) nanoparticles and Moringa oleifera extract on tartrazine removal: Coagulation-adsorption and kinetics studies. Environ. Technol. 2020, 41, 1648–1663. [Google Scholar] [CrossRef]
- Lei, C.; Wang, C.; Chen, W.; He, M.; Huang, B. Polyaniline@ magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. Sci. Total Environ. 2020, 733, 139316. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.; Huang, L.; Lin, Z.; Cai, Z. Core–shell structured magnetic covalent organic framework nanocomposites for triclosan and triclocarban adsorption. ACS Appl. Mater. Interfaces 2019, 11, 22492–22500. [Google Scholar] [CrossRef]
- Li, Q.; Kong, H.; Li, P.; Shao, J.; He, Y. Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). J. Hazard. Mater. 2019, 373, 437–446. [Google Scholar] [CrossRef]
Particle Composition | Particle Properties | Drug | Drug Loading Method | Specificities | Ref. |
---|---|---|---|---|---|
Size (nm) | |||||
Iron oxide | Coated with citric acid | Anticancer drug Dox | Noncovalent interaction | Cellular internalization of Dox-coated SPIONs was facilitated using a bar magnet. | [76] |
12 | |||||
Fe3O4 | Functionalized with PEG-COOH; emu/g | Insulin | Covalent bond | Magnetic separation of SPIONs happened within 30 s under external magnetic fields. | [79] |
500 | |||||
Iron oxide | Coated with PEG-Cur; emu/g | Cur | - | SPIONs were biocompatible and had the highest attainable drug release percentages under both neutral (43.7%) and acidic (53.5%) media conditions. | [75] |
24.33~34.24 | |||||
Fe3O4 | Conjugated with BSA 1; Zeta potential = −18.2 mV | MTX 2 | - | MTX release from Fe3O4@BSA-MTX showed an enzyme-dependent release pattern. | [80] |
105.7 ± 3.81 | |||||
Fe3O4 | Coated with BSA; Zeta potential = −10.1 mV | Cur | Desolvation and chemical co-precipitation | Particles were biocompatible and demonstrated an inhibitory effect on cancer cells in 72 h. | [81] |
56 ± 11.43 | |||||
Fe3O4 | Coated with silica and PVA; Conjugated with CPP | VAN | - | An external magnet was used to recover the particles from a concentrated solution of VAN. | [78] |
32 | |||||
Iron oxide | Labeled with Cy5.5 3; Coated with PEG; Zeta potential = −5.68 mV | gH625-derived peptide | Covalent thio-ether bonds | SPIONs could successfully reach tumor sites and accumulate there with the application of a magnetic field. | [77] |
87.17 ± 1.14 | |||||
Fe3O4 | Coated with PVA | Sorafenib | - | SPIONs were superparamagnetic and the cellular uptake studies suggested their efficient entrapment in HepG2 cells. | [82] |
5~15 |
Particle Composition | Particle Properties | Magnetic Field Source | Target Cell Type | Efficiency | Ref. |
---|---|---|---|---|---|
Size (nm) | |||||
Fe3O4 | Modified with fluorescent QDs; Conjugated with anti-EpCAM antibodies | Permanent magnet | MCF-7 cells and HepG2 cells | 90% | [88] |
301.2 ± 29.9 | |||||
Fe3O4 | Coated with CMD; emu/g | Permanent magnet | Circulating epithelial tumor cells | 97% | [89] |
25 | |||||
Fe3O4 | Coated with SiO2 shells; Modified with PMIDA | Permanent magnet | T CD4+ lymphocytes | 93.30% | [92] |
30 | |||||
Fe3O4 | Conjugated with anti-HER2 antibodies; Zeta potential = −36.5 mV in pH = 7.4 | NdFeB magnet | BT474, BT474/MCF7 | 94.5 ± 0.8% 70.6 ± 0.4% | [90] |
84.9 | |||||
Iron oxide | Coated with PEG; Modified with streptavidin-biotinylated anti-EpCAM antibodies | Halbach array (N52 magnets) | BxPC3 cells | 75% | [91] |
20.3 ± 1.5 | |||||
Iron oxide | Conjugated with anti-CD20 antibodies; Zeta potential = −10 mV at pH = 11 | Permanent magnet | CD20-expressing lymphoma cells | 95% | [94] |
12~47 | |||||
Iron oxide | Modified with carboxyl groups | NdFeB N42 magnets 0.2 T, 300 T/m | S. typhimurium | 80% | [93] |
150 | |||||
Fe3O4 | Polydopamine-coated porous MNPs | NdFeB magnet | Methicillin-resistant S. aureus | 99% | [95] |
200 |
Particle Composition | Magnetic Particle/Composite | Application | Target Species | Matrix | Ref. |
---|---|---|---|---|---|
Size (nm) | |||||
Fe3O4 | Biocomposite obtained from raffia fibers, Fe3O4 nanoparticles and Lindnera jadinii yeast. | Biological adsorbent | Cd(II) ions | Water | [134] |
27.9 | |||||
Fe3O4 | Polyethyleneimine-functionalized magnetite nanoparticles (PEI-MNPs). | Recovery and regeneration | Fucoidan | Water | [135] |
31 | |||||
Fe3O4 | Cobalt-doped Fe3O4 encapsulated with a zirconium-based metal–organic framework. | Removal and adsorption | Fenitrothion (removed) and phosphate (adsorbed) | Water | [136] |
80–100 | |||||
Fe3O4 | Fe3O4 loaded on persimmon tannin-functionalized (Ti3C2-NH2) composite. | Removal via adsorption | U(VI) and Cr(VI) ions | Water | [137] |
- | |||||
Fe3O4 | Uniformly distributed with a composition of 77.02% and 48.56% of Fe before and after the Fenton process, respectively. | Reduction in chemical oxygen demand (COD) | COD removal | Landfill leachate | [138] |
15 | |||||
Fe3O4 | Superparamagnetic Fe3O4 ( emu/g) and magnetite-olive pomace nanocomposite ( emu/g). | Removal through sorption | Ce(III) | Water | [139] |
- | |||||
Fe3O4 | Uniformly distributed, superparamagnetic Fe3O4 functionalized with Moringa eleifera salt extract ( emu/g). | Removal through magnetic coagulation | Tartrazine yellow dye | Wastewater | [140] |
20 | |||||
Fe3O4 | Fe3O4 with a magnetic chitosan shell coated with polyaniline. | Removal via adsorption and reduction | Cr(VI) | Wastewater | [141] |
25 | |||||
Fe3O4 | Superparamagnetic Fe3O4 ( emu/g) and Fe3O4@COF 1 composites ( emu/g). | Removal via adsorption and magnetic extraction | Triclosan and triclocarban | Water | [142] |
160 | |||||
Fe3O4 | TiO2-graphene oxide-Fe3O4 nanocomposite. | Degradation through photo-Fenton process | Amoxicillin | Wastewater | [143] |
5–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Ciannella, S.; Choe, H.; Strayer, J.; Wu, K.; Chalmers, J.; Gomez-Pastora, J. SPIONs Magnetophoresis and Separation via Permanent Magnets: Biomedical and Environmental Applications. Processes 2023, 11, 3316. https://doi.org/10.3390/pr11123316
Wu X, Ciannella S, Choe H, Strayer J, Wu K, Chalmers J, Gomez-Pastora J. SPIONs Magnetophoresis and Separation via Permanent Magnets: Biomedical and Environmental Applications. Processes. 2023; 11(12):3316. https://doi.org/10.3390/pr11123316
Chicago/Turabian StyleWu, Xian, Stefano Ciannella, Hyeon Choe, Jacob Strayer, Kai Wu, Jeffrey Chalmers, and Jenifer Gomez-Pastora. 2023. "SPIONs Magnetophoresis and Separation via Permanent Magnets: Biomedical and Environmental Applications" Processes 11, no. 12: 3316. https://doi.org/10.3390/pr11123316
APA StyleWu, X., Ciannella, S., Choe, H., Strayer, J., Wu, K., Chalmers, J., & Gomez-Pastora, J. (2023). SPIONs Magnetophoresis and Separation via Permanent Magnets: Biomedical and Environmental Applications. Processes, 11(12), 3316. https://doi.org/10.3390/pr11123316