Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance
Abstract
:1. Introduction
2. Background of Blackwater
2.1. Assessment of Vacuum Toilet Blackwater
2.2. Assessment of Dual-Flush Blackwater
2.3. Assessment of Conventional Blackwater
Properties | Unit | Vacuum Toilet | Dual Toilet | Conventional Toilet | Reference |
---|---|---|---|---|---|
pH | - | 8.62 | 8.50 | 8.40 | [33] |
TS | - | 17140 | 3570 | 2390 | [7] |
VS | - | 14200 | 2825 | 1847 | [7] |
COD | mg/L | 18500 | 4600 | 2600 | [34] |
FVAs | mg/L | 222 | 75 | 79 | [35] |
NH4+-N | mg/L | 1115.1 | 182 | 96.4 | [36] |
Free ammonia | mg/L | 355 (±10.3) | 53 (±1.2) | 24 (±0.9) | [34] |
3. Torrefaction of Biomass Scenario
3.1. Properties of Tor-Biochar
3.1.1. Bulk Density
3.1.2. Hydrophobicity
3.1.3. Grindability
4. Impacts of Torrefaction By-Products on Anaerobic Digestion and Other Processes
4.1. Additive in Anaerobic Digestion Processes
4.2. Facilitate in Biogas Production
4.3. Soil Amendment
4.4. Adsorbent for Organic and Inorganic Pollutant
5. Overview of Torrefied Biochar and Blackwater Economic Significance
6. Torrefied Biomass with Vacuum BW Challenges and Recommendation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water—A Comprehensive Review. Resour. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef]
- Salehi, M. Global Water Shortage and Potable Water Safety; Today’s Concern and Tomorrow’s Crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction. Int. J. Sustain. High. Educ. 2012, 13. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Zhou, X. A Systematical Review of Blackwater Treatment and Resource Recovery: Advance in Technologies and Applications. Resour. Conserv. Recycl. 2023, 197, 107066. [Google Scholar] [CrossRef]
- Anusuyadevi, P.R.; Kumar, D.J.P.; Jyothi, A.D.H.V.O.; Patwardhan, N.S.; V., J.; Mol, A. Towards Viable Eco-Friendly Local Treatment of Blackwater in Sparsely Populated Regions. Water 2023, 15, 542. [Google Scholar] [CrossRef]
- Colón, J.; Forbis-Stokes, A.A.; Deshusses, M.A. Anaerobic Digestion of Undiluted Simulant Human Excreta for Sanitation and Energy Recovery in Less-Developed Countries. Energy Sustain. Dev. 2015, 29, 57–64. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, L.; Zhang, H.; Florentino, A.P.; Liu, Y. Energy Recovery from Municipal Wastewater: Impacts of Temperature and Collection Systems. J. Environ. Eng. Sci. 2018, 14, 24–31. [Google Scholar] [CrossRef]
- Kujawa-Roeleveld, K.; Zeeman, G. Anaerobic Treatment in Decentralised and Source-Separation-Based Sanitation Concepts. Rev. Environ. Sci. Biotechnol. 2006, 5, 115–139. [Google Scholar] [CrossRef]
- Wendland, C.; Deegener, S.; Behrendt, J.; Toshev, P.; Otterpohl, R. Anaerobic Digestion of Blackwater from Vacuum Toilets and Kitchen Refuse in a Continuous Stirred Tank Reactor (CSTR). Water Sci. Technol. 2007, 55, 187–194. [Google Scholar] [CrossRef]
- Kumar, M.; Dutta, S.; You, S.; Luo, G.; Zhang, S.; Show, P.L.; Sawarkar, A.D.; Singh, L.; Tsang, D.C.W. A Critical Review on Biochar for Enhancing Biogas Production from Anaerobic Digestion of Food Waste and Sludge. J. Clean. Prod. 2021, 305, 127143. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of Biochars in Anaerobic Digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Godina, R.; de Matias, J.C.O.; Nunes, L.J.R. Future Perspectives of Biomass Torrefaction: Review of the Current State-of-the-Art and Research Development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Cahyanti, M.N.; Orupõld, K.; Kikas, T. Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy. Fermentation 2022, 8, 453. [Google Scholar] [CrossRef]
- Giwa, A.S.; Memon, A.G.; Vakili, M.; Ge, Y.; Wang, B. The Resource Recovery Potential of Blackwater and Foodwaste: Anaerobic Co-Digestion in Serial Semi-Continuous Stirred Tank Reactors. Int. J. Environ. Sci. Technol. 2022, 19, 5401–5408. [Google Scholar] [CrossRef]
- Mahmoud, N.S.; Ibrahim, M.; Mostafa, E.; Hassanien, R.; Hassanien, E. Greywater Sources, Characteristics, Utilization and Management Guidelines: A Review. Adv. Environ. Waste Manag. Recycl. 2021, 4, 134–151. [Google Scholar] [CrossRef]
- Sievers, J.C.; Wätzel, T.; Londong, J.; Kraft, E. Case Study: Characterization of Source-Separated Blackwater and Greywater in the Ecological Housing Estate Lübeck “Flintenbreite” (Germany). Environ. Earth Sci. 2016, 75, 1–7. [Google Scholar] [CrossRef]
- Awasthi, A.; Gandhi, K.; Rayalu, S. Greywater Treatment Technologies: A Comprehensive Review. Int. J. Environ. Sci. Technol. 2023, 1–30. [Google Scholar] [CrossRef]
- Zeeman, G.; Kujawa, K.; de Mes, T.; Hernandez, L.; de Graaff, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C.; et al. Anaerobic Treatment as a Core Technology for Energy, Nutrients and Water Recovery from Source-Separated Domestic Waste(Water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef]
- Hertel, S.; Navarro, P.; Deegener, S.; Körner, I. Biogas and Nutrients from Blackwater, Lawn Cuttings and Grease Trap Residues—Experiments for Hamburg’s Jenfelder Au District. Energy. Sustain. Soc. 2015, 5, 1–17. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus Recovery from Municipal Wastewater: An Integrated Comparative Technological, Environmental and Economic Assessment of P Recovery Technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef]
- Sun, H.; Mohammed, A.N.; Liu, Y. Phosphorus Recovery from Source-Diverted Blackwater through Struvite Precipitation. Sci. Total Environ. 2020, 743, 140747. [Google Scholar] [CrossRef]
- Sengupta, S.; Nawaz, T.; Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. 2015, 1, 155–166. [Google Scholar] [CrossRef]
- Elmitwalli, T.; Zeeman, G.; Otterpohl, R. Modelling Anaerobic Digestion of Concentrated Black Water and Faecal Matter in Accumulation System. Water Sci. Technol. 2011, 63, 2039–2045. [Google Scholar] [CrossRef]
- Moerland, M.J.; Borneman, A.; Chatzopoulos, P.; Fraile, A.G.; van Eekert, M.H.A.; Zeeman, G.; Buisman, C.J.N. Increased (Antibiotic-Resistant) Pathogen Indicator Organism Removal during (Hyper)Thermophilic Anaerobic Digestion of Concentrated Black Water for Safe Nutrient Recovery. Sustainability 2020, 12, 9336. [Google Scholar] [CrossRef]
- Hirano, S.H.; Hayes, G.R.; Truong, K.N. USmell: Exploring the Potential for Gas Sensors to Classify Odors in Ubicomp Applications Relative to Airflow and Distance. Pers. Ubiquitous Comput. 2015, 19, 189–202. [Google Scholar] [CrossRef]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Yu, N.; Liu, Y. Biomethane Recovery from Source-Diverted Household Blackwater: Impacts from Feed Sulfate. Process Saf. Environ. Prot. 2020, 136, 28–38. [Google Scholar] [CrossRef]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Liu, Y. Microbial Community Dynamics in Anaerobic Digesters Treating Conventional and Vacuum Toilet Flushed Blackwater. Water Res. 2019, 160, 249–258. [Google Scholar] [CrossRef]
- Kujawa-Roeleveld, K.; Elmitwalli, T.; Zeeman, G. Enhanced Primary Treatment of Concentrated Black Water and Kitchen Residues within DESAR Concept Using Two Types of Anaerobic Digesters. Water Sci. Technol. 2006, 53, 159–168. [Google Scholar] [CrossRef]
- Berg, W.J. van den Efficiency of Combined Heat and Power. Pers. Commun. 2008. Available online: https://scholar.google.com/scholar_lookup?title=KNN+Advies,+Efficiency+of+combined+heat+and+power&author=van+den+Berg,+W.J.&publication_year=2008 (accessed on 12 November 2023).
- CBS-Statline Energy Balance, Energy Consumption of Households. Available online: http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLNL&PA=70846ned&D1=0-1,3-4,30-33&D2=30&D3=5&D4=a&HD=080606-2108&HDR=T&STB=G3: (accessed on 12 November 2023).
- de Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT. Water 2010, 2, 101–119. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; El-Khateeb, M.A.; Regelsberger, M.; El-Sheikh, R.; Shehata, M. Integrated System for the Treatment of Blackwater and Greywater via UASB and Constructed Wetland in Egypt. Desalin. Water Treat. 2009, 8, 272–278. [Google Scholar] [CrossRef]
- Florentino, A.P.; Sharaf, A.; Zhang, L.; Liu, Y. Overcoming Ammonia Inhibition in Anaerobic Blackwater Treatment with Granular Activated Carbon: The Role of Electroactive Microorganisms. Environ. Sci. Water Res. Technol. 2019, 5, 383–396. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, L.; Florentino, A.P.; Liu, Y. Performance of Anaerobic Treatment of Blackwater Collected from Different Toilet Flushing Systems: Can We Achieve Both Energy Recovery and Water Conservation? J. Hazard. Mater. 2019, 365, 44–52. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, L.; Guo, B.; Zhang, Y.; Liu, Y. Enhancing Biomethane Recovery from Source-Diverted Blackwater through Hydrogenotrophic Methanogenesis Dominant Pathway. Chem. Eng. J. 2019, 378, 122258. [Google Scholar] [CrossRef]
- Khazraie Shoulaifar, T.; Demartini, N.; Willför, S.; Pranovich, A.; Smeds, A.I.; Virtanen, T.A.P.; Maunu, S.L.; Verhoeff, F.; Kiel, J.H.A.; Hupa, M. Impact of Torrefaction on the Chemical Structure of Birch Wood. Energy Fuels 2014, 28, 3863–3872. [Google Scholar] [CrossRef]
- Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic Acid and Lithium Chloride Effects on Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresour. Technol. 2011, 102, 6192–6199. [Google Scholar] [CrossRef]
- Li, M.F.; Chen, L.X.; Li, X.; Chen, C.Z.; Lai, Y.C.; Xiao, X.; Wu, Y.Y. Evaluation of the Structure and Fuel Properties of Lignocelluloses through Carbon Dioxide Torrefaction. Energy Convers. Manag. 2016, 119, 463–472. [Google Scholar] [CrossRef]
- Chyuan, H.; Ling, K.; Chen, W.; Katreena, M.; Bi, X.; Tran, K.; Anelie, P. Variation of Lignocellulosic Biomass Structure from Torrefaction: A Critical Review. Renew. Sustain. Energy Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Wang, Z.; Lim, C.J.; Grace, J.R. A Comprehensive Study of Sawdust Torrefaction in a Dual-Compartment Slot-Rectangular Spouted Bed Reactor. Energy 2019, 189, 116306. [Google Scholar] [CrossRef]
- Brachi, P.; Chirone, R.; Miccio, M.R.G. Fluidized Bed Torrefaction of Biomass Pellets: A Comparison between Oxidative and Inert Atmosphere. Powder Technol. 2019, 357, 97–107. [Google Scholar] [CrossRef]
- Wang, N.; Zhan, H.; Zhuang, X.; Xu, B.; Yin, X.; Wang, X.; Wu, C. Torrefaction of Waste Wood-Based Panels: More Understanding from the Combination of Upgrading and Denitrogenation Properties. Fuel Process. Technol. 2020, 206, 106462. [Google Scholar] [CrossRef]
- Chen, D.; Chen, F.; Cen, K.; Cao, X.; Zhang, J.; Zhou, J. Upgrading Rice Husk via Oxidative Torrefaction: Characterization of Solid, Liquid, Gaseous Products and a Comparison with Non-Oxidative Torrefaction. Fuel 2020, 275, 117936. [Google Scholar] [CrossRef]
- Manatura, K. Inert Torrefaction of Sugarcane Bagasse to Improve Its Fuel Properties. Case Stud. Therm. Eng. 2020, 19, 100623. [Google Scholar] [CrossRef]
- Hu, J.; Song, Y.; Liu, J.; Evrendilek, F.; Buyukada, M.; Yan, Y.; Li, L. Combustions of Torrefaction-Pretreated Bamboo Forest Residues: Physicochemical Properties, Evolved Gases, and Kinetic Mechanisms. Bioresour. Technol. 2020, 304, 122960. [Google Scholar] [CrossRef]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy 2011, 36, 803–811. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and Densification of Different Species of Softwood Residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Nyakuma, B.B.; Wong, S.L.; Faizal, H.M.; Hambali, H.U.; Oladokun, O.; Abdullah, T.A.T. Carbon Dioxide Torrefaction of Oil Palm Empty Fruit Bunches Pellets: Characterisation and Optimisation by Response Surface Methodology. Biomass Convers. Biorefinery 2022, 12, 5881–5900. [Google Scholar] [CrossRef]
- Hernández, A.B.; Okonta, F.; Freeman, N. Sewage Sludge Charcoal Production by N2- and CO2-Torrefaction. J. Environ. Chem. Eng. 2017, 5, 4406–4414. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Surup, G.; Shapiro, A.; Bates, R.B. Modeling the Influence of Potassium Content and Heating Rate on Biomass Pyrolysis. Appl. Energy 2017, 194, 199–211. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S. Biomass Torrefaction: Properties, Applications, Challenges, and Economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ahmad, S.W.; Kazmi, M.; Mohsin, M.; Feroze, N. Impact of Torrefaction Technique on the Moisture Contents, Bulk Density and Calorific Value of Briquetted Biomass. Polish J. Chem. Technol. 2015, 17, 23–28. [Google Scholar] [CrossRef]
- Oliveira, T.; Albert, P.L. Effects of Torrefaction on Energy Properties of Eucapytus Grandis Wood. Cerne 2009, 15, 446–452. [Google Scholar]
- Matin, S.S.; Chelgani, S.C. Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method. Fuel 2016, 177, 274–278. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Oyebode, W.A.; Ogunsuyi, H.O. Impact of Torrefaction Process Temperature on the Energy Content and Chemical Composition of Stool Tree (Alstonia Congenisis Engl) Woody Biomass. Curr. Res. Green Sustain. Chem. 2021, 4, 100115. [Google Scholar] [CrossRef]
- Sami, M.; Annamalai, K.; Wooldridge, M. Co-Firing of Coal and Biomass Fuel Blends. Prog. Energy Combust. Sci. 2001, 27, 171–214. [Google Scholar] [CrossRef]
- Cai, W.; Liu, R. Performance of a Commercial-Scale Biomass Fast Pyrolysis Plant for Bio-Oil Production. Fuel 2016, 182, 677–686. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Thermal Behaviour and Kinetic Study for Woody Biomass Torrefaction and Torrefied Biomass Pyrolysis by TGA. Biosyst. Eng. 2013, 116, 420–426. [Google Scholar] [CrossRef]
- Butnaru, E.; Stoleru, E.; Brebu, M. Valorization of Forestry Residues by Thermal Methods. The Effect of Temperature on Gradual Degradation of Structural Components in Bark from Silver Fir (Abies Alba Mill.). Ind. Crop. Prod. 2022, 187, 115376. [Google Scholar] [CrossRef]
- Wang, L.; Barta-Rajnai, E.; Skreiberg; Khalil, R.; Czégény, Z.; Jakab, E.; Barta, Z.; Grønli, M. Effect of Torrefaction on Physiochemical Characteristics and Grindability of Stem Wood, Stump and Bark. Appl. Energy 2018, 227, 137–148. [Google Scholar] [CrossRef]
- Colin, B.; Dirion, J.L.; Arlabosse, P.; Salvador, S. Quantification of the Torrefaction Effects on the Grindability and the Hygroscopicity of Wood Chips. Fuel 2017, 197, 232–239. [Google Scholar] [CrossRef]
- Gil, M.V.; García, R.; Pevida, C.; Rubiera, F. Grindability and Combustion Behavior of Coal and Torrefied Biomass Blends. Bioresour. Technol. 2015, 191, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of Torrefaction on Biomass Properties Depending on Temperature and Operation Time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Y.; Deng, M.; Wang, J.; Chen, M.; Yan, B.; Yuan, Q. Effect of Torrefaction Pretreatment and Catalytic Pyrolysis on the Pyrolysis Poly-Generation of Pine Wood. Bioresour. Technol. 2016, 214, 615–622. [Google Scholar] [CrossRef]
- Prakash Kumar, B.G.; Francis, R.R.; Raouf, A.; Subramanian, R.; Gupta, S.; Kannan, G.; Thirumavalavan, K. Torrefied Materials Derived from Waste Vegetable Biomass. Mater. Today Proc. 2019, 28, 852–855. [Google Scholar] [CrossRef]
- Wei, L.; Xu, S.; Zhang, L.; Zhang, H.; Liu, C.; Zhu, H.; Liu, S. Characteristics of Fast Pyrolysis of Biomass in a Free Fall Reactor. Fuel Process. Technol. 2006, 87, 863–871. [Google Scholar] [CrossRef]
- Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M. Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers-TGA Analysis, Kinetics as Products for Agricultural Purposes. Energies 2020, 13, 2064. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Tabatabaei, M.; Aghbashlo, M. Biogas Production from Food Wastes: A Review on Recent Developments and Future Perspectives; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 7, ISBN 9831339126. [Google Scholar]
- Doddapaneni, T.R.K.C.; Praveenkumar, R.; Tolvanen, H.; Rintala, J.; Konttinen, J. Techno-Economic Evaluation of Integrating Torrefaction with Anaerobic Digestion. Appl. Energy 2018, 213, 272–284. [Google Scholar] [CrossRef]
- Shao, Z.; Gnanasekar, P.; Tratnik, N.; Tanguy, N.R.; Guo, X.; Zhu, M.; Qiu, L.; Yan, N.; Chen, H. Low-Temperature Torrefaction Assisted with Solid-State KOH/Urea Pretreatment for Accelerated Methane Production in Wheat Straw Anaerobic Digestion. Bioresour. Technol. 2023, 377, 128940. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, D.; Castro, J.; Díez, D.; Martín-Marroquín, J.M.; Gómez, M.; Pérez, E. Torrefaction at Low Temperature as a Promising Pretreatment of Lignocellulosic Biomass in Anaerobic Digestion. Energy 2023, 263, 125822. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Lu, Q.; Zhu, W.; Ma, H.; Dai, L. Oxygen-Rich Biochar from Torrefaction: A Versatile Adsorbent for Water Pollution Control. Bioresour. Technol. 2019, 294, 122142. [Google Scholar] [CrossRef] [PubMed]
- Ronsse, F.; Nachenius, R.W.; Prins, W. Carbonization of Biomass; Elsevier B.V.: Amsterdam, The Netherlands, 2015; ISBN 9780444632906. [Google Scholar]
- Doddapaneni, T.R.K.C.; Jain, R.; Praveenkumar, R.; Rintala, J.; Romar, H.; Konttinen, J. Adsorption of Furfural from Torrefaction Condensate Using Torrefied Biomass. Chem. Eng. J. 2018, 334, 558–568. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gupta, A.; Ateia, M.; Sanchez, D.L.; Mahajani, S.M.; Lim, C.J.; Sokhansanj, S.; Ghoniem, A.F. Oxidative Torrefaction for Cleaner Utilization of Biomass for Soil Amendment. Clean. Eng. Technol. 2020, 1, 100033. [Google Scholar] [CrossRef]
- Xu, L.; Jia, Z.; Guo, M.; Mao, Z.S.; Fan, Y.; Zhang, Q.; Yang, C. Enhancement of Macromixing Performance of a Stirred Tank with a Novel V-Shaped Punched Baffle. Ind. Eng. Chem. Res. 2023, 62, 3733–3746. [Google Scholar] [CrossRef]
- Ahmad, R.; Jamaluddin, H.; Hussain, M.A. Application of Memetic Algorithm in Modelling Discrete-Time Multivariable Dynamics Systems. Mech. Syst. Signal Process. 2008, 22, 1595–1609. [Google Scholar] [CrossRef]
- Asirvadam, V.S.; McLoone, S.F.; Irwin, G.W. Computationally Efficient Sequential Learning Algorithms for Direct Link Resource-Allocating Networks. Neurocomputing 2005, 69, 142–157. [Google Scholar] [CrossRef]
- Giwa, A.S.; Xu, H.; Chang, F.; Wu, J.; Li, Y.; Ali, N.; Ding, S.; Wang, K. Effect of Biochar on Reactor Performance and Methane Generation during the Anaerobic Digestion of Food Waste Treatment at Long-Run Operations. J. Environ. Chem. Eng. 2019, 7, 103067. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Giwa, A.S.; Sheng, M.; Zhang, X.; Bo, H.; Memon, A.G.; Bai, S.; Ali, N.; Maurice, J.; Kaijun, W.; Bo, H.; et al. Approaches for Treating Domestic Wastewater with Food Waste and Recovery of Potential Resources. Environ. Pollut. Bioavailab. 2022, 34, 501–517. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Praveenkumar, R.; Tolvanen, H.; Palmroth, M.R.T.; Konttinen, J.; Rintala, J. Anaerobic Batch Conversion of Pine Wood Torrefaction Condensate. Bioresour. Technol. 2017, 225, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Tumuluru, J.S.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef]
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane Production through Anaerobic Digestion: Participation and Digestion Characteristics of Cellulose, Hemicellulose and Lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
- Alemneh, L.Y. Assessment of the Robustness of the Biofil Toilet. Environ. Risk Assess. Remediat. 2014, 05, 2021. [Google Scholar]
- Houser, M.; Stuart, D. An Accelerating Treadmill and an Overlooked Contradiction in Industrial Agriculture: Climate Change and Nitrogen Fertilizer. J. Agrar. Chang. 2020, 20, 215–237. [Google Scholar] [CrossRef]
- Girondé, A.; Poret, M.; Etienne, P.; Trouverie, J.; Bouchereau, A.; Le Cahérec, F.; Leport, L.; Orsel, M.; Niogret, M.F.; Deleu, C.; et al. A Profiling Approach of the Natural Variability of Foliar N Remobilization at the Rosette Stage Gives Clues to Understand the Limiting Processes Involved in the Low N Use Efficiency of Winter Oilseed Rape. J. Exp. Bot. 2015, 66, 2461–2473. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing Bare Fallows with Cover Crops in Fertilizer-Intensive Cropping Systems: A Meta-Analysis of Crop Yield and N Dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Bradford-Hartke, Z.; Lant, P.; Leslie, G. Phosphorus Recovery from Centralised Municipal Water Recycling Plants. Chem. Eng. Res. Des. 2012, 90, 78–85. [Google Scholar] [CrossRef]
- Abdelhadi, S.O.; Dosoretz, C.G.; Rytwo, G.; Gerchman, Y.; Azaizeh, H. Production of Biochar from Olive Mill Solid Waste for Heavy Metal Removal. Bioresour. Technol. 2017, 244, 759–767. [Google Scholar] [CrossRef]
- de Jesus, J.H.F.; Cunha, G.D.C.; Cardoso, E.M.C.; Mangrich, A.S.; Romão, L.P.C. Evaluation of Waste Biomasses and Their Biochars for Removal of Polycyclic Aromatic Hydrocarbons. J. Environ. Manag. 2017, 200, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Maurice, N.J.; Shahin, A.; Xiong, X.; Giwa, S.; Maurice, N.J. Preliminary Studies on the Performance of Vacuum Black Water with Biochar Additives in Anaerobic Digestion Process. Int. J. Tech. Sci. Res. Eng. 2021, 4, 1–7. [Google Scholar]
- Wannapeera, J.; Fungtammasan, B.; Worasuwannarak, N. Effects of Temperature and Holding Time during Torrefaction on the Pyrolysis Behaviors of Woody Biomass. J. Anal. Appl. Pyrolysis 2011, 92, 99–105. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vladut, V.; Voicu, G.; Dinca, M.N.; Zabava, B.S. Influence of Biomass Moisture Content on Pellet Properties—Review. Eng. Rural Dev. 2018, 17, 1876–1883. [Google Scholar] [CrossRef]
- Anshu, K.; Lee, J.S.; Mohan, V.; Kung, K.S.; Sokhansanj, S.; Cao, Y.; Thengane, S.K. Torrefaction Severity Influence on the Nutrient Composition of Biomass. Biomass Convers. Biorefinery 2023, 1–12. [Google Scholar] [CrossRef]
- Cai, W.; Fivga, A.; Kaario, O.; Liu, R. Effects of Torrefaction on the Physicochemical Characteristics of Sawdust and Rice Husk and Their Pyrolysis Behavior by Thermogravimetric Analysis and Pyrolysis-Gas Chromatography/Mass Spectrometry. Energy Fuels 2017, 31, 1544–1554. [Google Scholar] [CrossRef]
- Kudo, S.; Okada, J.; Ikeda, S.; Yoshida, T.; Asano, S.; Hayashi, J.I. Improvement of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam. Energy Fuels 2019, 33, 11253–11262. [Google Scholar] [CrossRef]
- Silva, N.F.P.; Gonçalves, A.L.; Moreira, F.C.; Silva, T.F.C.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Boaventura, R.A.R.; Vilar, V.J.P.; Pires, J.C.M. Towards Sustainable Microalgal Biomass Production by Phycoremediation of a Synthetic Wastewater: A Kinetic Study. Algal Res. 2015, 11, 350–358. [Google Scholar] [CrossRef]
- El-Gendy, N.S.; Nassar, H.N. Phycoremediation of Phenol-Polluted Petro-Industrial Effluents and Its Techno-Economic Values as a Win-Win Process for a Green Environment, Sustainable Energy and Bioproducts. J. Appl. Microbiol. 2021, 131, 1621–1638. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Lourenço, K.S.; Clark, C.; Luz, R.L.; da Silva, G.H.R.; Vet, L.E.M.; Cantarella, H.; Fernandes, T.V.; Kuramae, E.E. From Toilet to Agriculture: Fertilization with Microalgal Biomass from Wastewater Impacts the Soil and Rhizosphere Active Microbiomes, Greenhouse Gas Emissions and Plant Growth. Resour. Conserv. Recycl. 2020, 161, 104924. [Google Scholar] [CrossRef]
- Giwa, A.S.; Ali, N.; Vakili, M.; Guo, X.; Liu, D.; Wang, K. Opportunities for Holistic Waste Stream Valorization from Food Waste Treatment Facilities: A Review. Rev. Chem. Eng. 2022, 38, 35–53. [Google Scholar] [CrossRef]
- Chang, F.M.; Wang, Q.B.; Segun, G.; Jia, J.W.; Wang, K.J. Two-Stage Catalytic Pyrolysis of Sewage Sludge for Syngas Production. Zhongguo Huanjing Kexue/China Environ. Sci. 2015, 35, 804–810. [Google Scholar]
- Wang, L.; Riva, L.; Skreiberg, Ø.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels 2020, 34, 15343–15354. [Google Scholar] [CrossRef]
- Giwa, A.S.; Maurice, N.J.; Luoyan, A.; Liu, X.; Yunlong, Y.; Hong, Z. Advances in Sewage Sludge Application and Treatment: Process Integration of Plasma Pyrolysis and Anaerobic Digestion with the Resource Recovery. Heliyon 2023, 9, e19765. [Google Scholar] [CrossRef] [PubMed]
- Danelli, T.; Sepulcri, A.; Masetti, G.; Colombo, F.; Sangiorgio, S.; Cassani, E.; Anelli, S.; Adani, F.; Pilu, R. Arundo Donax l. Biomass Production in a Polluted Area: Effects of Two Harvest Timings on Heavy Metals Uptake. Appl. Sci. 2021, 11, 1147. [Google Scholar] [CrossRef]
- Kurniawan, T.; Hakiki, R.; Sidjabat, F.M. Wastewater Sludge As an Alternative Energy Resource: A Review. J. Environ. Eng. Waste Manag. 2018, 3, 1–12. [Google Scholar] [CrossRef]
- Tanoh, T.S.; Ait Oumeziane, A.; Lemonon, J.; Escudero Sanz, F.J.; Salvador, S. Green Waste/Wood Pellet Pyrolysis in a Pilot-Scale Rotary Kiln: Effect of Temperature on Product Distribution and Characteristics. Energy Fuels 2020, 34, 3336–3345. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Zhou, X.; Wang, X.; Zuo, S. Anaerobic Co-Digestion of Kitchen Waste and Blackwater for Different Practical Application Scenarios in Decentralized Scale: From Wastes to Energy Recovery. Water 2020, 12, 2556. [Google Scholar] [CrossRef]
- Idowu, I.A.; Hashim, K.; Shaw, A.; Nunes, L.J.R. Enhancing the Fuel Properties of Beverage Wastes as Non-Edible Feedstock for Biofuel Production. Biofuels 2022, 13, 763–770. [Google Scholar] [CrossRef]
- Oh, S.W.; Park, D.H.; Lee, S.M.; Ahn, B.J.; Ahn, S.H.; Yang, I. Effect of Torrefaction Temperature on Lignin Distribution of Larix Kaempferi C. and Liriodendron Tulipifera L. Cubes and the Impact of Binder on Durability of Pellets Fabricated with the Torrefied Cubes. Environ. Prog. Sustain. Energy 2019, 38, 13190. [Google Scholar] [CrossRef]
- Qadi, N.; Kobayashi, M.; Takeno, K. Influence of Torrefaction after Densification on the Fuel Characteristics and the Inherited Gasification Kinetics of Erianthus Arundinaceus Energy Grass. Environ. Prog. Sustain. Energy 2019, 38, 13266. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Ahrenfeldt, J.; Henriksen, U.B. Validation of a Multiparameter Model to Investigate Torrefied Biomass Pelletization Behavior. Energy Fuels 2017, 31, 1644–1649. [Google Scholar] [CrossRef]
Biomass | Torrefaction Technology | Torrefaction Condition | Torrefied By-Product Properties | Reference |
---|---|---|---|---|
Sawdust | Non-oxidative torrefaction | 240–300 °C, 50 and 120 min | Solid yield: 32.6–65.1% HHV: 19.56–25.95 MJ/kg Energy yield: 73.3–99.6% | [41] |
Oxidative torrefaction | 240–300 °C, 50 and 120 min, O2 gas | Solid yield: 41.3–60.1% HHV: 19.30–23.50 MJ/kg Energy yield: 65.7–94.5% | ||
Commercial fir pellets | Non-oxidative torrefaction | 200–250 °C, 15 min, 20 °C min−1, N2 gas | Solid yield: 52.72–90.12 wt% Liquid yield: 3.68–18.90 db HHV: 20.71–24.20 MJ/kg Energy yield: 65.06–93.65% | [42] |
Fiberboard | Dry torrefaction | 200–300 °C, 5–120 min, N2 gas | Solid yield: 50.18–97.02 wt % Energy density ratio: Highest 1.24 | [43] |
Rice husk | Oxidative torrefaction | 220–300 °C, 30 min, 0–15 vol% O2 | Solid yield: 55–85% Energy yield: 64–89% | [44] |
Non-oxidative torrefaction | 220–300 °C, 30 min, N2 | Solid yield: 92.71% HHV: ≤18.91 MJ/kg Energy yield: 80.56% | ||
Sugarcane bagasse | Dry torrefaction | 200–275 °C, 15–60 min, 20 °C min−1, N2 gas | Solid yield: 54–80% HHV: ≤24.01 MJ/kg Energy yield: 69–89% | [45] |
Olive pomace pellets | Non-oxidative torrefaction | 200–250 °C, 15 min, 20 °C min−1, N2 gas | Solid yield: 56.34–79.92 wt% Liquid yield: 3.37–13.8 db HHV: 24.42–27.16 MJ/kg Energy yield: 75.22–94.50% | [42] |
Plywood | Dry torrefaction | 200–300 °C, 5–120 min, N2 gas | Solid yield: 52.26–96.68 wt% Energy density ratio: Highest 1.23 | [43] |
Bamboo residue | Dry torrefaction | 200–300 °C, 60 min, 10 °C min−1, N2 gas | Solid yield: 49.48–86.24% HHV: 17.57–21.96% | [46] |
Olive pomace pellets | Oxidative torrefaction | 200–250 °C, 15 min, 20 °C min−1, air | Solid yield: 53.04–71.41 wt% Liquid yield: 10.34–24.7 db HHV: 23.53–26.15 MJ/kg Energy yield: 68.40–82.12% | [42] |
Biomass | Proximate Analysis (wt%) | Ultimate Analysis (wt%) | Reference | |||||
---|---|---|---|---|---|---|---|---|
Volatile Materials | Fixed Carbon Ash | Ash Content CV | C | N | H | S | ||
Oak wood | 79.12 | - | 3.24 | 48.53 | 0.34 | 5.89 | 0.02 | [66] |
Pine wood | 83.7 | 15.9 | 0.4 | 48.1 | 0.4 | 6.3 | 0.18 | [67] |
Bamboo residues | 66.98 | 13.67 | 12.40 | 40.51 | 1.30 | 5.72 | 0.14 | [46] |
Vegetable biomass | 76.5 | 34.8 | 23.8 | 51.82 | 4.1 | 6.79 | 0.19 | [68] |
Tobacco stalk | 71.6 | 10.9 | 17.5 | 39.56 | 3.18 | 4.85 | - | [69] |
Maize straw | 82.4 | - | 4.2 | 42.3 | 0.63 | 5.61 | 0.07 | [70] |
Torrefaction by Products | Applications | Outcome | Reference |
---|---|---|---|
Tor-biochar | Additive in AD | Torrefied biochar as an addition in CSTR might be considered an alternate pre-treatment strategy. | [71] |
Tor-biochar and tor-condensate | Contaminants removal | Good technical and economic feasibility, particularly when coupled with AD treatment for absorption of contaminants. | [72] |
Urea and potassium hydroxide (KOH) together in torrefaction pretreatment. | Straw valorization with AD at the upstream section | This leads to 41% more methane production than batch AD straw that has not been treated. High digestate quality for farming. | [73] |
Tor-biochar | Facilitation of biogas in AD | Offers 275% and 250% biomethane yield. | [74] |
Biochar from torrefied biomass | Additive in AD | Optimizes tor-biomass biochar features to enhance bioprocess. | [40] |
Tor-biochar and pyro-biochar performance | Pollutant adsorption capacity evaluation for dye | Tor-biochar adsorption capacity is 192.67 mg/g and 56.21 mg/g, while pyro biochar is 50 mg/g and 100 mg/g, respectively. | [75] |
Tor-biochar | Climate mitigation | Improves soil quality and support carbon sequestration in the soil. | [76] |
Tor-biochar from tor-biomass | Additive in AD | Adsorbent for organic and inorganic pollutant. Mitigates inhibition in AD. | [77] |
Tor-biochar | Facilitation of soil amendment | Acts as organic fertilizer; when tested for soil amendment, improves crop growth. | [78] |
Merits | Challenges | Recommendation | Reference |
---|---|---|---|
Produces tor-gas and tor-condensates | Tar generation in by-products causing equipment fouling and corrosion | Application of a two-stage torrefaction | [104] |
Produces high gas and fuel amounts | Pipeline and tubes blockage | Application of a two-stage catalytic torrefaction device | [105] |
High energy density can significantly decrease transport costs | Low bulk density of torrefied biomass | Pelletizing can address this challenge by increasing the bulk density | [106] |
Torrefaction with AD is economically feasible | Configuration challenges, including higher maintenance requirements | Process optimization with extensive techno-economic sensitive analysis | [53] |
Co-digestion of tor-biomass and VCBW will improve digestate quality and biogas yield | Possibility of AD inhibition during the integration | Co-digestion of BW-torrefied biomass will balance the COD:N ratio of BW with biomass and generate CH4 | [84] |
Tor-biomass integrated with AD offers different fuel and energy products (digestates, biogas, biochar, and syngas) | Market value clarity and uncertainty exist in the integrated technology by-products (digestates, biogas, biochar, and syngas) | The energy produced from the by-products of these processes can be utilized to operate the treatment facility or be sold to the power grid, thus generating extra income | [107] |
Ability to immobilize some harmful materials | Challenges with concentrated heavy metals in the solid fragment | Optimization in the process of torrefaction to significantly reduce complex harmful emissions | [108,109] |
Emission of harmful products and ash-related issues | Inserting emission control device; washing pretreatment could be a promising route to reduce pollutant emissions during torrefaction and remove ash in torrefied biomass | [110] | |
Both torrefaction and AD as standalones and combined could produce energy by-products | Moisture and associated water content could inhibit ignition and lower energy value of by-products | Conducting torrefaction on the BW digestate downstream with other resistant items like wood, cardboard, and certain paper could yield high-calorific products | [111]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, P.F.; Claire, M.J.; Han, S.; Maurice, N.J.; Giwa, A.S. Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance. Processes 2023, 11, 3330. https://doi.org/10.3390/pr11123330
Chiang PF, Claire MJ, Han S, Maurice NJ, Giwa AS. Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance. Processes. 2023; 11(12):3330. https://doi.org/10.3390/pr11123330
Chicago/Turabian StyleChiang, Ping Fa, Mugabekazi Joie Claire, Shanshan Han, Ndungutse Jean Maurice, and Abdulmoseen Segun Giwa. 2023. "Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance" Processes 11, no. 12: 3330. https://doi.org/10.3390/pr11123330
APA StyleChiang, P. F., Claire, M. J., Han, S., Maurice, N. J., & Giwa, A. S. (2023). Effectiveness of Torrefaction By-Products as Additive in Vacuum Blackwater under Anaerobic Digestion and Economic Significance. Processes, 11(12), 3330. https://doi.org/10.3390/pr11123330