Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactose-6-Phosphate Preparation
2.2. Decolorization of Lactose-6-Phosphate Solution
2.3. Color Measurements
2.4. Total Solids and pH
2.5. Statistical Analysis
3. Results and Discussion
3.1. pH and TS of Solutions
3.2. Color Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solarek, D.B. Phosphorylated starches and miscellaneous inorganic esters. In Modified Starches. Properties and Uses; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Chiu, C.; Solarek, D. Modification of starches. In Starch; Elsevier: Amsterdam, The Netherlands, 2009; pp. 629–655. [Google Scholar]
- Lin, Q.; Xiao, H.; Zhao, J.; Li, L.; Yu, F. Characterization of the pasting, flow and rheological properties of native and phosphorylated rice starches. Starch-Stärke 2009, 61, 709–715. [Google Scholar] [CrossRef]
- Lim, S.; Seib, P.A. Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chem. 1993, 70, 137. [Google Scholar]
- Muhammad, K.; Hussin, F.; Man, Y.C.; Ghazali, H.M.; Kennedy, J.F. Effect of pH on phosphorylation of sago starch. Carbohydr. Polym. 2000, 42, 85–90. [Google Scholar] [CrossRef]
- Nathania, I.; Sugih, A.K.; Muljana, H. Preliminary Study on the Synthesis of Phosphorylated Mung Bean Starch: The Effect of pH on the Physicochemical and Functional Properties. Indones. J. Chem. 2017, 17, 401–406. [Google Scholar] [CrossRef]
- Lifran, E.V.; Hourigan, J.A.; Sleigh, R.W.; Johnson, R.L. New wheys for lactose. Food Aust. 2000, 52, 120–125. [Google Scholar]
- Lifran, E.V.; Vu, T.T.L.; Durham, R.J.; Hourigan, J.A.; Sleigh, R.W. Crystallisation kinetics of lactose in the presence of lactose phosphate. Powder Technol. 2007, 179, 43–54. [Google Scholar] [CrossRef]
- Thum, C.; Cookson, A.; McNabb, W.C.; Roy, N.C.; Otter, D. Composition and enrichment of caprine milk oligosaccharides from New Zealand Saanen goat cheese whey. J. Food Compos. Anal. 2015, 42, 30–37. [Google Scholar] [CrossRef]
- Cumar, F.A.; Ferchmin, P.A.; Caputto, R. Isolation and identification of a lactose phosphate ester from cow colostrum. Biochem. Biophys. Res. Commun. 1965, 20, 60–62. [Google Scholar] [CrossRef]
- Albrecht, S.; Lane, J.A.; Mariño, K.; Al Busadah, K.A.; Carrington, S.D.; Hickey, R.M.; Rudd, P.M. A comparative study of free oligosaccharides in the milk of domestic animals. Br. J. Nutr. 2014, 111, 1313–1328. [Google Scholar] [CrossRef]
- Breg, J.; Romijn, D.; van Halbeek, H.; Vliegenthart, J.F.G.; Visser, R.A.; Haasnoot, C.A.G. Characterisation of four lactose monophosphates by application of 31P-, 13C-, and 1H-n.m.r. spectroscopy. Carbohydr. Res. 1988, 174, 23–36. [Google Scholar] [CrossRef]
- Inoue, H.; Tone, N.; Nakayama, H.; Tsuhako, M. Phosphorylation of disaccharides with inorganic cyclo-triphosphate in aqueous solution. Chem. Pharm. Bull. 2002, 50, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Holsinger, V.H. Physical and chemical properties of lactose. In Advanced Dairy Chemistry Volume 3; Springer: Boston, MA, USA, 1997; pp. 1–38. [Google Scholar]
- Zheng, Q.; Lin, B.; Zhang, Q.; Wu, S.; Wang, S.; He, X.; Wang, Y.; Guan, X.; Huang, X. Treating distillers’ grain from the Luzhou aroma/flavor industry to degrade fiber. Energy Fuels 2015, 29, 4305–4310. [Google Scholar] [CrossRef]
- Lewkowski, J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc 2001, 1, 17–54. [Google Scholar] [CrossRef]
- Nikzad, M.; Movagharnejad, K.; Talebnia, F.; Najafpour, G.; Hosein, F.G.A. A study on alkali pretreatment conditions of sorghum stem for maximum sugar recovery using statistical approach. Chem. Ind. Chem. Eng. Q. 2014, 20, 261–271. [Google Scholar] [CrossRef]
- de Oliveira, F.C.; dos Reis Coimbra, J.S.; de Oliveira, E.B.; Zuñiga, A.D.G.; Rojas, E.E.G. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1108–1125. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Liu, F.; Wang, B.; Chen, L.; Liu, W.; Tan, S. A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: Advantages, disadvantages, and avoidance strategies. Foods 2021, 10, 1998. [Google Scholar] [CrossRef] [PubMed]
- Kearsley, M.W.; Dziedzic, S.Z. Physical and chemical properties of glucose syrups. In Handbook of Starch Hydrolysis Products and Their Derivatives; Springer: Boston, MA, USA, 1995; pp. 129–154. [Google Scholar]
- Adikane, H.V.; Dange, M.N.; Selvakumari, K. Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresour. Technol. 2006, 97, 2131–2135. [Google Scholar] [CrossRef]
- Dahiya, J.; Singh, D.; Nigam, P. Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour. Technol. 2001, 78, 95–98. [Google Scholar] [CrossRef]
- Ghosh, D.; Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300. [Google Scholar] [CrossRef]
- Vittadini, E.; Lee, J.H.; Frega, N.G.; Min, D.B.; Vodovotz, Y. DSC determination of thermally oxidized olive oil. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 533–537. [Google Scholar] [CrossRef]
- Mane, J.D.; Modi, S.; Nagawade, S.; Phadnis, S.P.; Bhandari, V.M. Treatment of spentwash using chemically modified bagasse and colour removal studies. Bioresour. Technol. 2006, 97, 1752–1755. [Google Scholar] [CrossRef]
- Satyawali, Y.; Balakrishnan, M. Removal of color from biomethanated distillery spentwash by treatment with activated carbons. Bioresour. Technol. 2007, 98, 2629–2635. [Google Scholar] [CrossRef]
- Garrido, A.; García, P.; Brenes, M. The recycling of table olive brine using ultrafiltration and activated carbon adsorption. J. Food Eng. 1992, 17, 291–305. [Google Scholar] [CrossRef]
- Bernardo, E.C.; Egashira, R.; Kawasaki, J. Decolorization of molasses’ wastewater using activated carbon prepared from cane bagasse. Carbon 1997, 35, 1217–1221. [Google Scholar] [CrossRef]
- Abdulkarim, M.A.; Darwish, N.A.; Magdy, Y.M.; Dwaidar, A. Adsorption of Phenolic Compounds and Methylene Blue onto Activated Carbon Prepared from Date Fruit Pits. Eng. Life Sci. 2002, 2, 161. [Google Scholar] [CrossRef]
- Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. Synthesis of activated carbon from food waste. Environ. Chem. Lett. 2019, 17, 429–438. [Google Scholar] [CrossRef]
- Samsuri, A.W.; Sadegh-Zadeh, F.; Seh-Bardan, B.J. Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int. J. Environ. Sci. Technol. 2014, 11, 967–976. [Google Scholar] [CrossRef]
- Yorgun, S.; Yıldız, D.; Şimşek, Y.E. Activated carbon from paulownia wood: Yields of chemical activation stages. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 2035–2042. [Google Scholar] [CrossRef]
- Zhang, Y.; Campbell, R.; Drake, M.; Zhong, Q. Decolorization of Cheddar cheese whey by activated carbon. J. Dairy Sci. 2015, 98, 2982–2991. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.-E.; Baek, S.-H.; Choi, U.; Bae, H.-J. Preparation of Activated Carbon from Korean Anthracite: Simultaneous Control of Ash Reduction and Pore Development. Processes 2023, 11, 2877. [Google Scholar] [CrossRef]
- Hammam, A.R.A.; Kapoor, R.; Salunke, P.; Metzger, L.E. Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate. Foods 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Alsaleem, K.A. A Process to Produce Lactose Phosphate from Dairy By-Products and Used as an Alternative to Emulsifying Salts in Processed Cheese Food Manufacture; South Dakota State University: Brookings, SD, USA, 2022; ISBN 9798363549182. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Mudoga, H.L.; Yucel, H.; Kincal, N.S. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresour. Technol. 2008, 99, 3528–3533. [Google Scholar] [CrossRef] [PubMed]
- Obeid, L.; Bée, A.; Talbot, D.; Ben Jaafar, S.; Dupuis, V.; Abramson, S.; Cabuil, V.; Welschbillig, M. Chitosan/maghemite composite: A magsorbent for the adsorption of methyl orange. J. Colloid Interface Sci. 2013, 410, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0429114184. [Google Scholar]
- Weber, W.J., Jr.; Morris, J.C. Closure to “kinetics of adsorption on carbon from solution”. J. Sanit. Eng. Div. 1963, 89, 53–55. [Google Scholar] [CrossRef]
- Cendekia, D.; Afifah, D.A.; Hanifah, W. Linearity Graph in the Prediction of Granular Active Carbon (GAC) Adsorption Ability. Proc. IOP Conf. Ser. Earth Environ. Sci. 2022, 1012, 12079. [Google Scholar] [CrossRef]
- Lubis, R.A.F.; Nasution, H.I.; Zubir, M. Production of activated carbon from natural sources for water purification. Indones. J. Chem. Sci. Technol. 2020, 3, 67–73. [Google Scholar] [CrossRef]
- Ma, X.; Uddin, S. Desorption of 1, 3, 5-trichlorobenzene from multi-walled carbon nanotubes: Impact of solution chemistry and surface chemistry. Nanomaterials 2013, 3, 289–302. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F.J. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250. [Google Scholar] [CrossRef]
- Yang, Y.; Chun, Y.; Sheng, G.; Huang, M. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 2004, 20, 6736–6741. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Lin, L. Research progress on the removal of phthalic acid esters in water. Proc. E3S Web Conf. 2021, 261, 2041. [Google Scholar] [CrossRef]
- Mohan, S.V.; Shailaja, S.; Krishna, M.R.; Sarma, P.N. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: A kinetic study. J. Hazard. Mater. 2007, 146, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, E.C.; Fukuta, T.; Fujita, T.; Ona, E.P.; Kojima, Y.; Matsuda, H. Enhancement of saccharin removal from aqueous solution by activated carbon adsorption with ultrasonic treatment. Ultrason. Sonochem. 2006, 13, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.W. Activated carbon in sugar refining. Ind. Eng. Chem. 1942, 34, 1057–1060. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef]
- Hata, M.; Amano, Y.; Thiravetyan, P.; Machida, M. Preparation of bamboo chars and bamboo activated carbons to remove color and COD from ink wastewater. Water Environ. Res. 2016, 88, 87–96. [Google Scholar] [CrossRef]
Treatments 1 | pH | Total Solids (%) |
---|---|---|
Bottom layer | 11.70 a | 27.92 a |
Dilated solution | 11.72 a | 12.61 b |
1st stage | 11.64 ab | 8.43 c |
2nd stage | 11.61 ab | 7.78 c |
3rd stage | 11.51 b | 6.89 d |
4th stage | 11.32 c | 6.11 de |
5th stage | 11.05 d | 5.91 e |
6th stage | 10.91 de | 5.33 e |
7th stage | 10.86 e | 6.03 de |
Treatments 1 | pH | Total Solids (%) |
---|---|---|
Bottom layer | 11.66 a | 30.12 a |
Dilated solution | 11.54 ab | 8.83 b |
1st stage | 11.48 ab | 8.17 bc |
2nd stage | 11.29 abc | 6.78 bcd |
3rd stage | 11.17 bc | 6.21 cd |
4th stage | 10.89 c | 5.73 d |
5th stage | 10.35 d | 5.76 d |
6th stage | 10.34 d | 5.48 d |
7th stage | 10.37 d | 4.93 d |
Treatments 1 | Parameters 2 | ||
---|---|---|---|
L* | a* | b* | |
Standard | 89.53 ± 0.31 a | −4.97 ± 0.03 c | 6.07 ± 0.15 g |
1st stage | 64.98 ± 2.01 e | 2.56 ± 0.17 a | 44.28 ± 1.85 a |
2nd stage | 73.96 ± 1.93 d | −6.31 ± 0.17 e | 32.99 ± 0.91 b |
3rd stage | 77.71 ± 1.37 c | −7.05 ± 0.14 g | 16.95 ± 0.46 c |
4th stage | 81.48 ± 2.87 b | −6.71 ± 0.23 f | 13.30 ± 0.58 d |
5th stage | 81.85 ± 1.86 b | −6.51 ± 0.07 ef | 11.05 ± 0.56 e |
6th stage | 75.31 ± 1.52 cd | −5.71 ± 0.09 d | 7.87 ± 0.35 f |
7th stage | 75.04 ± 1.56 cd | −5.44 ± 0.08 d | 7.16 ± 0.16 fg |
Bottom layer | 33.49 ± 0.27 f | 2.17 ± 0.32 b | −1.85 ± 0.12 h |
Treatments 1 | Parameters 2 | ||
---|---|---|---|
L* | a* | b* | |
Standard | 89.53 ± 0.31 a | −4.97 ± 0.03 b | 6.07 ± 0.15 de |
1st stage | 73.68 ± 5.69 c | −0.41 ± 3.72 a | 45.29 ± 3.05 a |
2nd stage | 81.34 ± 1.49 b | −5.80 ± 0.15 b | 23.70 ± 0.87 b |
3rd stage | 87.34 ± 1.34 a | −6.41 ± 0.39 b | 16.17 ± 4.95 bc |
4th stage | 86.61 ± 1.20 a | −6.34 ± 0.23 b | 14.22 ± 2.07 cd |
5th stage | 88.05 ± 0.67 a | −6.08 ± 0.27 b | 11.02 ± 1.41 cd |
6th stage | 89.99 ± 0.32 a | −5.29 ± 0.27 b | 7.36 ± 1.15 cd |
7th stage | 90.21 ± 0.38 a | −5.02 ± 0.08 b | 6.17 ± 0.23 de |
Treatments 1 | ||||
---|---|---|---|---|
1st stage | 602.70 | 56.70 | 1460.26 | 46.03 |
2nd stage | 242.53 | 1.79 | 724.87 | 31.13 |
3rd stage | 139.71 | 4.33 | 118.45 | 16.20 |
4th stage | 64.86 | 3.03 | 52.27 | 10.96 |
5th stage | 58.98 | 2.36 | 24.77 | 9.27 |
6th stage | 202.21 | 0.55 | 3.23 | 14.35 |
7th stage | 210.15 | 0.22 | 1.19 | 14.54 |
Bottom layer | 3140.12 | 50.97 | 62.72 | 57.04 |
Treatments 1 | ||||
---|---|---|---|---|
1st stage | 251.33 | 23.36 | 1538.21 | 42.57 |
2nd stage | 67.13 | 0.69 | 310.82 | 19.45 |
3rd stage | 4.81 | 2.06 | 102.08 | 10.43 |
4th stage | 8.55 | 1.87 | 66.42 | 8.76 |
5th stage | 2.21 | 1.23 | 24.47 | 5.28 |
6th stage | 0.21 | 0.10 | 1.66 | 1.40 |
7th stage | 0.45 | 0.00 | 0.01 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaleem, K.A.; Hammam, A.R.A.; Metzger, L.E. Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon. Processes 2023, 11, 3357. https://doi.org/10.3390/pr11123357
Alsaleem KA, Hammam ARA, Metzger LE. Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon. Processes. 2023; 11(12):3357. https://doi.org/10.3390/pr11123357
Chicago/Turabian StyleAlsaleem, Khalid A., Ahmed R. A. Hammam, and Lloyd E. Metzger. 2023. "Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon" Processes 11, no. 12: 3357. https://doi.org/10.3390/pr11123357
APA StyleAlsaleem, K. A., Hammam, A. R. A., & Metzger, L. E. (2023). Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon. Processes, 11(12), 3357. https://doi.org/10.3390/pr11123357