Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization
3. Results and Discussion
3.1. Liquefaction Yields
3.1.1. Effect of Temperature
3.1.2. Effect of Reaction Time
3.1.3. Effect of Ni-Based Catalysts Addition with and without Fe as Hydrogen Producer
3.2. Characterization of Products
3.2.1. Feedstock and Bio-Crude Elemental Analysis
3.2.2. GS-MS of Bio-Crude
3.2.3. Infrared Analysis of Bio-Crudes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.T.; Qian, W.; Zhang, Y.; Mazur, Z.; Kuo, C.T.; Scheppe, K.; Schideman, L.C.; Sharma, B.K. Effect of ash on hydrothermal liquefaction of high-ash content algal biomass. Algal Res. 2017, 25, 297–306. [Google Scholar] [CrossRef]
- Yerrayya, A.; Shree Vishnu, A.K.; Shreyas, S.; Chakravarthy, S.R.; Vinu, R. Hydrothermal Liquefaction of Rice Straw Using Methanol as Co-Solvent. Energies 2020, 13, 2618. [Google Scholar] [CrossRef]
- Cao, M.; Long, C.; Sun, S.; Zhao, Y.; Luo, J.; Wu, D. Catalytic hydrothermal liquefaction of peanut shell for the production aromatic rich monomer compounds. J. Energy Inst. 2021, 96, 90–96. [Google Scholar] [CrossRef]
- de Caprariis, B.; Bavasso, I.; Bracciale, M.P.; Damizia, M.; De Filippis, P.; Scarsella, M. Enhanced bio-crude yield and quality by reductive hydrothermal liquefaction of oak wood biomass: Effect of iron addition. J. Anal. Appl. Pyrolysis 2019, 139, 123–130. [Google Scholar] [CrossRef]
- Brilman, D.W.F.; Drabik, N.; Wądrzyk, M. Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Convers. Biorefinery 2017, 7, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Changi, S.M.; Faeth, J.L.; Mo, N.; Savage, P.E. Hydrothermal Reactions of Biomolecules Relevant for Microalgae Liquefaction. Ind. Eng. Chem. Res. 2015, 54, 11733–11758. [Google Scholar] [CrossRef]
- Barrère-Mangote, C.; Roubaud, A.; Bouyssiere, B.; Maillard, J.; Hertzog, J.; Maître, J.L.; Hubert-Roux, M.; Sassi, J.F.; Afonso, C.; Giusti, P. Study of biocrudes obtained via hydrothermal liquefaction (Htl) of wild alga consortium under different conditions. Processes 2021, 9, 1494. [Google Scholar] [CrossRef]
- Leng, L.; Leng, S.; Chen, J.; Yuan, X.; Li, J.; Li, K.; Wang, Y.; Zhou, W. The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass. Bioresour. Technol. 2018, 259, 156–163. [Google Scholar] [CrossRef]
- Biswas, B.; Bisht, Y.; Kumar, J.; Yenumala, S.R.; Bhaskar, T. Effects of temperature and solvent on hydrothermal liquefaction of the corncob for production of phenolic monomers. Biomass Convers. Biorefinery 2022, 12, 91–101. [Google Scholar] [CrossRef]
- Carpio, R.B.; Zhang, Y.; Kuo, C.T.; Chen, W.T.; Schideman, L.C.; de Leon, R. Effects of reaction temperature and reaction time on the hydrothermal liquefaction of demineralized wastewater algal biomass. Bioresour. Technol. Rep. 2021, 14, 100679. [Google Scholar] [CrossRef]
- Scarsella, M.; de Caprariis, B.; Damizia, M.; De Filippis, P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass Bioenergy 2020, 140, 105662. [Google Scholar] [CrossRef]
- Prasakti, L.; Rochmadi, R.; Budiman, A. The Effect of Biomass-Water Ratio on Bio-crude Oil Production from Botryococcus braunii using Hydrothermal Liquefaction Process. J. Rekayasa Proses 2019, 13, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Haarlemmer, G.; Guizani, C.; Anouti, S.; Déniel, M.; Roubaud, A.; Valin, S. Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 2016, 174, 180–188. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, B.; Wang, H.; Bao, G.; Hu, Y.; Charles Xu, C.; Long, H. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust. Fuel 2022, 312, 122804. [Google Scholar] [CrossRef]
- Nagappan, S.; Bhosale, R.R.; Nguyen, D.D.; Chi, N.T.L.; Ponnusamy, V.K.; Woong, C.S.; Kumar, G. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products—A review. Fuel 2021, 285, 119053. [Google Scholar] [CrossRef]
- Sharma, N.; Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Nanda, M.; Rautela, I.; Tomar, M.S.; Ahmad, W. Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review. Renew. Energy 2021, 174, 810–822. [Google Scholar] [CrossRef]
- Mukundan, S.; Xuan, J.; Dann, S.E.; Wagner, J.L. Highly active and magnetically recoverable heterogeneous catalyst for hydrothermal liquefaction of biomass into high quality bio-oil. Bioresour. Technol. 2023, 369, 128479. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Le, T.M.; Nguyen, H. Van Iron-catalyzed fast hydrothermal liquefaction of Cladophora socialis macroalgae into high quality fuel precursor. Bioresour. Technol. 2021, 337, 125445. [Google Scholar] [CrossRef]
- de Caprariis, B.; Scarsella, M.; Bavasso, I.; Bracciale, M.P.; Tai, L.; De Filippis, P. Effect of Ni, Zn and Fe on hydrothermal liquefaction of cellulose: Impact on bio-crude yield and composition. J. Anal. Appl. Pyrolysis 2021, 157, 105225. [Google Scholar] [CrossRef]
- Biswas, B.; Kumar, A.; Kaur, R.; Krishna, B.B.; Bhaskar, T. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresour. Technol. 2021, 337, 125439. [Google Scholar] [CrossRef]
- Durak, H.; Genel, S. Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresour. Technol. 2020, 309, 123375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, H.; Wang, H.; Hu, Y.; Gao, J.; Zhao, G.; Ray, M.B.; Xu, C.C. Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass. Renew. Energy 2021, 176, 543–554. [Google Scholar] [CrossRef]
- Ding, Y.J.; Zhao, C.X.; Liu, Z.C. Catalytic hydrothermal liquefaction of rice straw for production of monomers phenol over metal supported mesoporous catalyst. Bioresour. Technol. 2019, 294, 122097. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.; Golzary, A.; Hosseinpour, M.; Takahashi, F.; Yoshikawa, K. Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl. Energy 2016, 183, 566–576. [Google Scholar] [CrossRef]
- Kalnes, T.N.; Koers, K.P.; Marker, T.; Shonnard, D.R. A technoeconomic and environmental life cycle comparison of green diesel to biodiesel and syndiesel. Environ. Prog. Sustain. Energy 2009, 28, 111–120. [Google Scholar] [CrossRef]
- Kim, D.; Vardon, D.R.; Murali, D.; Sharma, B.K.; Strathmann, T.J. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustain. Chem. Eng. 2016, 4, 1775–1784. [Google Scholar] [CrossRef]
- Mishra, V.K.; Goswami, R. A review of production, properties and advantages of biodiesel. Biofuels 2017, 9, 273–289. [Google Scholar] [CrossRef]
- Di Vito Nolfi, G.; Gallucci, K.; Rossi, L. Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils. Int. J. Environ. Res. Public Health 2021, 18, 13041. [Google Scholar] [CrossRef]
- Vardon, D.R.; Sharma, B.K.; Jaramillo, H.; Kim, D.; Choe, J.K.; Ciesielski, P.N.; Strathmann, T.J. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chem. 2014, 16, 1507–1520. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.; Deng, Z.; Dasgupta, A.; Guo, Y. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: Mechanism and kinetic modeling. Chem. Eng. J. 2021, 407, 126332. [Google Scholar] [CrossRef]
- Cheah, K.W.; Taylor, M.J.; Osatiashtiani, A.; Beaumont, S.K.; Nowakowski, D.J.; Yusup, S.; Bridgwater, A.V.; Kyriakou, G. Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catal. Today 2020, 355, 882–892. [Google Scholar] [CrossRef] [Green Version]
- Dawood, S.; Koyande, A.K.; Ahmad, M.; Mubashir, M.; Asif, S.; Klemeš, J.J.; Bokhari, A.; Saqib, S.; Lee, M.; Qyyum, M.A.; et al. Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies. Chemosphere 2021, 278, 130469. [Google Scholar] [CrossRef]
- Ezeagu, I.E.; Petzke, J.K.; Metges, C.C.; Akinsoyinu, A.O.; Ologhobo, A.D. Seed protein contents and nitrogen-to-protein conversion factors for some uncultivated tropical plant seeds. Food Chem. 2002, 78, 105–109. [Google Scholar] [CrossRef]
- Hamidi, R.; Tai, L.; Paglia, L.; Scarsella, M.; Damizia, M.; De Filippis, P.; Musivand, S.; de Caprariis, B. Hydrotreating of oak wood bio-crude using heterogeneous hydrogen producer over Y zeolite catalyst synthesized from rice husk. Energy Convers. Manag. 2022, 255, 115348. [Google Scholar] [CrossRef]
- Tai, L.; Hamidi, R.; Paglia, L.; De Filippis, P.; Scarsella, M.; de Caprariis, B. Lignin-enriched waste hydrothermal liquefaction with ZVMs and metal-supported Al2O3 catalyst. Biomass Bioenergy 2022, 165, 106594. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Dandamudi, K.P.R.; Muppaneni, T.; Markovski, J.S.; Lammers, P.; Deng, S. Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions. Biomass Bioenergy 2019, 120, 224–228. [Google Scholar] [CrossRef]
- Chan, Y.H.; Yusup, S.; Quitain, A.T.; Uemura, Y.; Sasaki, M. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluids 2014, 95, 407–412. [Google Scholar] [CrossRef]
- Aljabri, H.; Das, P.; Khan, S.; AbdulQuadir, M.; Thaher, M.; Hawari, A.H.; Al-Shamary, N.M. A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process. Renew. Energy 2022, 189, 78–89. [Google Scholar] [CrossRef]
- Hao, B.; Xu, D.; Jiang, G.; Sabri, T.A.; Jing, Z.; Guo, Y. Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude. Green Chem. 2021, 23, 1562–1583. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Xu, D.; Zhang, X.; Ye, N.; Chen, F.; Chen, S. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresour. Technol. 2012, 104, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Takagi, H.; Hirano, K.; Mashimo, K. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J. Mater. Sci. 2008, 43, 2476–2486. [Google Scholar] [CrossRef]
- Tai, L.; de Caprariis, B.; Scarsella, M.; De Filippis, P.; Marra, F. Improved Quality Bio-Crude from Hydrothermal Liquefaction of Oak Wood Assisted by Zero-Valent Metals. Energy Fuels 2021, 35, 10023–10034. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, Q.; Zhang, Q.; Wu, K.; Pu, W.; Yang, M.; Wu, Y. Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil. RSC Adv. 2017, 7, 8944–8951. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Brown, R.C.; Kieffer, M.; Bai, X. Hydrogen-donor-assisted solvent liquefaction of lignin to short-chain alkylphenols using a micro reactor/gas chromatography system. Energy Fuels 2014, 28, 6429–6437. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Li, Q.; Sun, D.; Chen, X.; Yu, X. Direct FTIR Analysis of Free Fatty Acids in Edible Oils Using Disposable Polyethylene Films. Food Anal. Methods 2015, 8, 857–863. [Google Scholar] [CrossRef]
BS | BM | |
---|---|---|
Proximate analysis (wt%) 1 | ||
Moisture (%) | 7.3 | 7.5 |
Volatile (%) | 72.3 | 79.2 |
Fixed carbon (%) | 16.5 | 9.8 |
Ash (%) | 3.9 | 3.5 |
Elemental analysis (wt%) 2 | ||
C | 56.75 | 45.42 |
H | 7.41 | 6.08 |
N | 1.91 | 2.10 |
O 3 | 31.06 | 46.40 |
Protein 4 | 10.5 | 11.6 |
H/C (molar ratio) | 1.57 | 1.60 |
HHV (MJ/kg) | 25.14 | 17.71 |
C | H | N | O 1 | H/C 2 | E. R. (%) | HHV (MJ/kg) | |
---|---|---|---|---|---|---|---|
BS—Blank | 65.45 | 8.67 | 1.63 | 24.25 | 1.58 | 52.73 | 30.68 |
BS—0.5Fe | 76.54 | 9.71 | 1.76 | 11.99 | 1.52 | 86.95 | 37.30 |
BS—0.5Fe-0.1Ni | 70.47 | 8.70 | 1.82 | 19.21 | 1.44 | 65.42 | 33.02 |
BS—0.5Fe-0.1Ni/Al2O3 | 77.15 | 10.03 | 2.10 | 10.72 | 1.56 | 86.56 | 38.04 |
BM—Blank | 62.78 | 6.71 | 1.03 | 29.48 | 1.28 | 50.06 | 26.62 |
BM—0.5Fe | 69.48 | 7.68 | 0.91 | 21.93 | 1.32 | 64.11 | 31.11 |
BM—0.5 Fe + 0.1 Ni | 68.23 | 7.57 | 0.90 | 23.30 | 1.33 | 63.80 | 30.38 |
BM—0.5Fe-0.1Ni/Al2O3 | 71.02 | 7.79 | 1.10 | 22.29 | 1.31 | 86.31 | 31.72 |
BS | BM | |
---|---|---|
1-Tetradecene | 0.56 | - |
Tetradecane | 0.97 | 2.44 |
Pentadecane | 2.53 | 4.55 |
1-Hexadecene | 1.92 | - |
Hexadecane | 1.01 | 2.72 |
8-Heptadecene | 0.84 | - |
Heptadecane | 12.17 | 10.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eladnani, I.; Bracciale, M.P.; Damizia, M.; Mousavi, S.; De Filippis, P.; Lakhmiri, R.; de Caprariis, B. Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude. Processes 2023, 11, 324. https://doi.org/10.3390/pr11020324
Eladnani I, Bracciale MP, Damizia M, Mousavi S, De Filippis P, Lakhmiri R, de Caprariis B. Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude. Processes. 2023; 11(2):324. https://doi.org/10.3390/pr11020324
Chicago/Turabian StyleEladnani, Ikram, Maria Paola Bracciale, Martina Damizia, Seyedmohammad Mousavi, Paolo De Filippis, Rajae Lakhmiri, and Benedetta de Caprariis. 2023. "Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude" Processes 11, no. 2: 324. https://doi.org/10.3390/pr11020324
APA StyleEladnani, I., Bracciale, M. P., Damizia, M., Mousavi, S., De Filippis, P., Lakhmiri, R., & de Caprariis, B. (2023). Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude. Processes, 11(2), 324. https://doi.org/10.3390/pr11020324