Review on Digestibility of Aerobic Granular Sludge
Abstract
:1. Introduction
2. Aerobic Granular Sludge Physical Properties
3. Aerobic Granular Sludge Biochemical Properties
4. Sludge Preparation Prior to Digestion
5. Digestion of Aerobic Granular Sludge
6. Impact of Microbial Community Structure on AGS Digestibility
7. Utilization of Modelling Tools for Prediction of AGS Digestibility
8. Conclusions and Potential Areas of Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nancharaiah, Y.V.; Sarvajith, M. Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment. Curr. Opin. Environ. Sci. Health 2019, 12, 57–65. [Google Scholar] [CrossRef]
- Pronk, M.; Giesen, A.; Thompson, A.; Robertson, S.; Van Loosdrecht, M. Aerobic granular biomass technology: Advancements in design, applications and further developments. Water Pract. Technol. 2017, 12, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Hamza, R.; Rabii, A.; Ezzahraoui, F.Z.; Morgan, G.; Iorhemen, O.T. A review of the state of development of aerobic granular sludge technology over the last 20 years: Full-scale applications and resource recovery. Case Stud. Chem. Environ. Eng. 2022, 5, 100173. [Google Scholar] [CrossRef]
- Hreiz, R.; Latifi, M.A.; Roche, N. Optimal design and operation of activated sludge processes: State-of-the-art. Chem. Eng. J. 2015, 281, 900–920. [Google Scholar] [CrossRef] [Green Version]
- Bassin, J.P.; Winkler, M.K.H.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M.C.M. Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Biotechnol. Bioeng. 2012, 109, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Tay, J.H.; Liu, Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem. 2004, 39, 579–584. [Google Scholar] [CrossRef]
- Tay, J.H.; Liu, Q.S.; Liu, Y. The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Sci. Technol. 2004, 49, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; van Lier, J.B.; de Kreuk, M. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Water Res. 2020, 173, 115617. [Google Scholar] [CrossRef]
- Pronk, M.; de Kreuk, M.K.; de Bruin, B.; Kamminga, P.; Kleerebezem, R.; van Loosdrecht, M.C.M. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef]
- Metcalf & Eddy Inc. Wastewater Engineering Treatment and Resource Recovery; Tchobanoglous, G., Stensel, D., Tsuchihashi, R., Burton, F., Abu-Orf, M., Bowden, G., Pfrang, W., Eds.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- Castellanos, R.M.; Dias, J.M.R.; Bassin, I.D.; Dezotti, M.; Bassin, J.P. Effect of sludge age on aerobic granular sludge: Addressing nutrient removal performance and biomass stability. Process Saf. Environ. Prot. 2021, 149, 212–222. [Google Scholar] [CrossRef]
- Świątczak, P.; Cydzik-Kwiatkowska, A. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environ. Sci. Pollut. Res. 2018, 25, 1655–1669. [Google Scholar] [CrossRef] [Green Version]
- Hamza, R.A.; Zaghloul, M.S.; Iorhemen, O.T.; Sheng, Z.; Tay, J.H. Optimization of organics to nutrients (COD:N:P) ratio for aerobic granular sludge treating high-strength organic wastewater. Sci. Total Environ. 2019, 650, 3168–3179. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M. Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives. Sustainability 2022, 14, 904. [Google Scholar] [CrossRef]
- Haaksman, V.A.; Mirghorayshi, M.; van Loosdrecht, M.C.M.; Pronk, M. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge. Water Res. 2020, 187, 116402. [Google Scholar] [CrossRef]
- Guo, H.; Felz, S.; Lin, Y.; van Lier, J.B.; de Kreuk, M. Structural extracellular polymeric substances determine the difference in digestibility between waste activated sludge and aerobic granules. Water Res. 2020, 181, 115924. [Google Scholar] [CrossRef]
- Hamza, R.A.; Iorhemen, O.T.; Zaghloul, M.S.; Tay, J.H. Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment. J. Water Process Eng. 2018, 22, 27–33. [Google Scholar] [CrossRef]
- Aqeel, H.; Weissbrodt, D.G.; Cerruti, M.; Wolfaardt, G.M.; Wilén, B.-M.; Liss, S.N. Drivers of bioaggregation from flocs to biofilms and granular sludge. Environ. Sci. Water Res. Technol. 2019, 5, 2072–2089. [Google Scholar] [CrossRef]
- de Sousa Rollemberg, S.L.; De Oliveira, L.Q.; De Barros, A.N.; Firmino, P.I.M.; Dos Santos, A.B. Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: Optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. Bioresour. Technol. 2020, 311, 123467. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Moy, B.; Kong, Y.-H.; Tay, J.-H. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb. Technol. 2010, 46, 520–525. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Hao, T.; Khanal, S.K.; Chen, G. Elucidating pyrolysis behaviour of activated sludge in granular and flocculent form: Reaction kinetics and mechanism. Water Res. 2019, 162, 409–419. [Google Scholar] [CrossRef]
- Jahn, L.; Saracevic, E.; Svardal, K.; Krampe, J. Anaerobic biodegradation and dewaterability of aerobic granular sludge. J. Chem. Technol. Biotechnol. 2019, 94, 2908–2916. [Google Scholar] [CrossRef] [Green Version]
- Palmeiro-Sánchez, T.; Val del Río, A.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Comparison of the anaerobic digestion of activated and aerobic granular sludges under brackish conditions. Chem. Eng. J. 2013, 231, 449–454. [Google Scholar] [CrossRef]
- Val Del Río, Á.; Palmeiro-Sanchez, T.; Figueroa, M.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Anaerobic digestion of aerobic granular biomass: Effects of thermal pre-treatment and addition of primary sludge. J. Chem. Technol. Biotechnol. 2014, 89, 690–697. [Google Scholar] [CrossRef]
- Bernat, K.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I.; Karczewska, M. Physicochemical properties and biogas productivity of aerobic granular sludge and activated sludge. Biochem. Eng. J. 2017, 117, 43–51. [Google Scholar] [CrossRef]
- Zou, J.; Pan, J.; He, H.; Wu, S.; Xiao, N.; Ni, Y.; Li, J. Nitrifying aerobic granular sludge fermentation for releases of carbon source and phosphorus: The role of fermentation pH. Bioresour. Technol. 2018, 260, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Cydzik-Kwiatkowska, A.; Bernat, K.; Zielińska, M.; Gusiatin, M.Z.; Wojnowska-Baryła, I.; Kulikowska, D. Valorization of full-scale waste aerobic granular sludge for biogas production and the characteristics of the digestate. Chemosphere 2022, 303, 135167. [Google Scholar] [CrossRef]
- Dangcong, P.; Bernet, N.; Delgenes, J.-P.; Moletta, R. Aerobic granular sludge—A case report. Water Res. 1999, 33, 890–893. [Google Scholar] [CrossRef]
- Liu, Y.; Nilsen, P.J.; Maulidiany, N.D. Thermal pretreatment to enhance biogas production of waste aerobic granular sludge with and without calcium phosphate precipitates. Chemosphere 2019, 234, 725–732. [Google Scholar] [CrossRef]
- Val del Río, A.; Morales, N.; Isanta, E.; Mosquera-Corral, A.; Campos, J.L.; Steyer, J.P.; Carrère, H. Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability. Water Res. 2011, 45, 6011–6020. [Google Scholar] [CrossRef]
- Farno, E.; Baudez, J.C.; Parthasarathy, R.; Eshtiaghi, N. The viscoelastic characterisation of thermally-treated waste activated sludge. Chem. Eng. J. 2016, 304, 362–368. [Google Scholar] [CrossRef]
- Feng, G.; Ma, H.; Bai, T.; Guo, Y. Rheology characteristics of activated sludge and thermal treated sludge at different process temperature. Water Sci. Technol. 2018, 2017, 229–237. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Zou, J.; Li, Y. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential. Bioresour. Technol. 2016, 218, 18–26. [Google Scholar] [CrossRef]
- Champagne, P.; Li, C. Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresour. Technol. 2009, 100, 5700–5706. [Google Scholar] [CrossRef]
- Lin, H.; Ma, R.; Hu, Y.; Lin, J.; Sun, S.; Jiang, J.; Li, T.; Liao, Q.; Luo, J. Reviewing bottlenecks in aerobic granular sludge technology: Slow granulation and low granular stability. Environ. Pollut. 2020, 263, 114638. [Google Scholar] [CrossRef]
- Sepúlveda-Mardones, M.; Campos, J.L.; Magrí, A.; Vidal, G. Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: An overview. Rev. Environ. Sci. Bio/Technol. 2019, 18, 741–769. [Google Scholar] [CrossRef]
- Feng, C.; Lotti, T.; Canziani, R.; Lin, Y.; Tagliabue, C.; Malpei, F. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. Sci. Total Environ. 2021, 753, 142051. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Liu, Y.; Tay, J.-H. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 2005, 69, 469–473. [Google Scholar] [CrossRef]
- Liu, X.; Pei, Q.; Han, H.; Yin, H.; Chen, M.; Guo, C.; Li, J.; Qiu, H. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal. Environ. Res. 2022, 208, 112692. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.L.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Chang, S.W.; Ngo, H.H.; Guo, W.; Nghiem, L.D.; Banu, J.R.; Jeon, B.H.; Nguyen, D.D. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content. Waste Manag. 2019, 85, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Farhat, A.; Asses, N.; Ennouri, H.; Hamdi, M.; Bouallagui, H. Combined effects of thermal pretreatment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production. Process Saf. Environ. Prot. 2018, 119, 14–22. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kisielewska, M.; Nowicka, A.; Rokicka, M.; Szwarc, K. Comparison of Ultrasonic and Hydrothermal Cavitation Pretreatments of Cattle Manure Mixed with Straw Wheat on Fermentative Biogas Production. Waste Biomass Valorization 2019, 10, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Bourven, I.; Guibaud, G.; van Hullebusch, E.D.; Panico, A.; Pirozzi, F.; Esposito, G. Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment. Appl. Microbiol. Biotechnol. 2015, 99, 9883–9905. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Qiao, M.; Xu, Y.; Ma, C.; Zhang, X. Pretreatment of waste activated sludge by peracetic acid oxidation for enhanced anaerobic digestion. Environ. Prog. Sustain. Energy 2018, 37, 2058–2062. [Google Scholar] [CrossRef]
- Li, A.; Yang, S.; Li, X.; Gu, J. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res. 2008, 42, 3552–3560. [Google Scholar] [CrossRef]
Sludge Type | Particle Size (mm) | Reference |
---|---|---|
AGS | 1.4–1.7 | [23] |
AGS | 1.3–1.6 | [24] |
AGS | 1 | [25] |
AGS | 1.74 | [26] |
AGS | 0.4–0.8 | [22] |
AS | 0.29 | |
AGS | 1.75 | [21] |
AGS | 1.79 | [16] |
WAS | 0.114 | |
AGS | 0.09–0.35 mm | [27] |
Source of Sludge | Type of Wastewater | Sludge Type | COD | TS | VS | Reference |
---|---|---|---|---|---|---|
Pilot plant (100 L) | Swine manure | AGS | 39.7 g/L | 29.6 g/L | 27.3 g/L | [30] |
Synthetic wastewater | AGS | 85.7 g/L | 106 g/L | 60.1 g/L | ||
Pilot plant | Brewery wastewater | AGS | 8–31.1 g/L | 14–21.1 g/L | 7.3–15.9 g/L | [23] |
WWTP Calo-Milladoiro, Spain | Municipal wastewater | AS | 29 g/L | 15.7 g/L | 10.9 g/L | |
Pilot (100 L) | Swine manure | AGS | 7.7–27.5 g/L | 9.2–21.1 g/L | 8.4–19.2 g/L | [24] |
Lab scale SBR | - | AGS | Soluble: 403 (mg/gVSS) | - | - | [34] |
Lab scale SBR | - | AS | Soluble: 329 (mg/gVSS) | - | - | |
Lab scale SBR (4.5 L) | - | AGS | - | 2.28 (%) | 1.47 (%) | [25] |
WWTP Olsztyn, Poland | Municipal wastewater | AS | - | 4.51 (%) | 3.46 (%) | |
WWTP Olsztyn, Poland | Municipal wastewater | PS | - | 1.71 (%) | 1.33 (%) | |
Lab scale SBR | - | AGS | 17.21 g/L | 15.3 (gTSS/L) | 12.8 (gVSS/L) | [26] |
Lab scale SBR (6–8 L) | - | AGS | - | - | - | [22] |
Municipal WWTP | Municipal wastewater | AS | - | - | - | |
Nereda® plant Garmerwolde | Municipal wastewater | AGS wasted | 71.3 (g/L) | 6.1 (%) | 4.9 (%) | [8] |
Municipal wastewater | AGS Washed out | 79.1 (g/L) | 6.6 (%) | 5.1 (%) | ||
WWTP Harnaschpolder | Municipal wastewater | WAS | 72.4 (g/L) | 6.2 (%) | 5 (%) | |
Municipal wastewater | PS | 77.8 (g/L) | 6.4 (%) | 5 (%) | ||
Nereda® plant Garmerwolde | Municipal wastewater | AGS | - | 5.41 (%) | 4.25 (%) | [16] |
WWTP in Harnaschpolder, the Netherlands | Municipal wastewater | WAS | - | 5.16 (%) | 4.14 (%) | |
WWTP in Lubawa (Poland) | Municipal wastewater | AGS | - | 1.55 (%) | 1.24 (%) | [27] |
Source of Sludge | Type of Wastewater | Sludge Type | Carbohydrates | Proteins (mg/gVS) | Polysaccharides | Lipids (mg/gVS) | VFAs (mg/gVS) | PHA | References |
---|---|---|---|---|---|---|---|---|---|
Pilot plant (100 L) | Swine manure | AGS | 3.6 g/L | 16.6 g/L | - | 0.05 g/L | 1.4 g/L | 0.8 g/L | [30] |
Synthetic wastewater | AGS | 6.9 g/L | 26.9 g/L | - | 0.013 g/L | 7.5 g/L | 5.5 g/L | ||
Pilot plant | Brewery wastewater | AGS | - | - | - | - | ND | - | [23] |
WWTP Calo-Milladoiro, Spain | Municipal wastewater | AS | - | - | - | - | 0.27 (g/L) | - | |
Pilot (100 L) | Swine manure | AGS | - | - | - | - | ND–1 g/L | - | [24] |
Lab scale SBR | - | AGS | Soluble: 42 (mg/gVSS) | Soluble: 82.7 (mg/gVSS) | - | - | 355 | - | [34] |
Lab scale SBR | - | AS | Soluble: 39.1 (mg/gVSS) | Soluble: 63 (mg/gVSS) | - | - | 352 | - | |
Lab scale SBR (4.5 L) | - | AGS | 0.002 (%) | 0.926 (%) | - | 0.008 (%) | - | - | [25] |
WWTP Olsztyn, Poland | Municipal wastewater | AS | 0.095 (%) | 2.121 (%) | - | 0.04 (%) | - | - | |
WWTP Olsztyn, Poland | Municipal wastewater | PS | 0.162 (%) | 0.292 (%) | - | 0.01 (%) | - | - | |
Lab scale SBR | - | AGS | 113.4 (mg/gVSS) | 701.6 (mg/gVSS) | - | - | - | - | [26] |
Lab scale airlift SBR | - | AGS | - | 365 mg/gVSS | 135 mg/gVSS | - | - | - | [21] |
WWTP in Hong Kong | Municipal wastewater | AS | - | 265 mg/gVSS | 245 mg/gVSS | - | - | - | |
Nereda® plant Garmerwolde | Municipal wastewater | AGS wasted | 217 (mg glucose/g sludge) | 498 | - | 37 | 4.6 | - | [8] |
Municipal wastewater | AGS Washed out | 429 (mg glucose/g sludge) | 301 | - | 60 | 9.7 | - | ||
WWTP Harnaschpolder | Municipal wastewater | WAS | 190 (mg glucose/g sludge) | 389 | - | 35 | 5.6 | - | |
Municipal wastewater | PS | 464 (mg glucose/g sludge) | 248 | - | 73 | 8.6 | - |
Reference | [34] | [25] | [26] | [21] | [29] | [27] | ||||
Sludge Type | AGS | AS | AGS | AS | PS | AGS | AGS | AS | AGS | AGS |
NH4+ | 0.7 (mg/gVSS) | 1.8 (mg/gVSS) | - | - | - | - | - | - | - | - |
TN | 39.4 (mg/gVSS) | 38.3 (mg/gVSS) | - | - | - | - | - | - | - | - |
PO43− | 9.7 (mg/gVSS) | 10.2 (mg/gVSS) | - | - | - | - | - | - | - | - |
TP | 39.3 (mg/gVSS) | 26.7 (mg/gVSS) | - | - | - | 31.5 (mg/gVSS) | - | - | 9.21–56.51 (g/kgTS) | - |
K | 18.2 (mg/gVSS) | 17 (mg/gVSS) | - | - | - | - | 0.34% | 0.27% | 2.62–3.3 (g/kgTS) | - |
Ca | - | - | - | - | - | 60.3 (mg/gVSS) | 5.34% | 0.31% | 19.77–188.1 (g/kgTS) | - |
Na | - | - | - | - | - | - | 5.11% | 2.29% | 5.42–5.87 (g/kgTS) | - |
Mg | 10.4 (mg/gVSS) | 7.6 (mg/gVSS) | - | - | - | 9.1 (mg/gVSS) | 0.19% | 0.40% | 1.9–3.05 (g/kgTS) | - |
Mn | - | - | - | - | - | - | - | - | 0.025–0.018 (g/kgTS) | - |
Al | - | - | - | - | - | 2.4 (mg/gVSS) | ND | 0.08% | - | - |
Zn | - | - | - | - | - | - | 0.05% | 0.01% | 0.009–0.004 (g/kgTS) | 295.6 (mg/kgTSS) |
Fe | - | - | - | - | - | 6.3 (mg/gVSS) | 0.02% | 0.16% | 0.34–0.21 (g/kgTS) | - |
Cu | - | - | - | - | - | - | ND | 0.01% | 0.086–0.058 (g/kgTS) | 268 (mg/kgTSS) |
Co | - | - | - | - | - | - | - | - | 0.009–0.021 (g/kgTS) | - |
Ni | - | - | - | - | - | - | - | - | 0.009 (g/kgTS) | 24 (mg/kgTSS) |
Hg | - | - | - | - | - | - | - | - | - | 0.0098 (mg/kgTSS) |
Cr | - | - | - | - | - | - | - | - | - | 39.7 (mg/kgTSS) |
Cd | - | - | - | - | - | - | - | - | - | 1.6 (mg/kgTSS) |
Pb | - | - | - | - | - | - | - | - | - | 15.1 (mg/kgTSS) |
C | - | - | 49.80% | 57% | 60% | - | 38.62% | 40.80% | - | - |
O | - | - | 1.76% | 7.56% | 9.50% | - | - | - | - | - |
N | - | - | 7.90% | 7% | 2.80% | - | 9.38% | 8.54% | - | - |
H | - | - | 5% | 5.20% | 5.60% | - | 5.81% | 6.41% | - | - |
S | - | - | - | - | - | - | 0.76% | 2.12% | - | - |
Type of Sludge | Type of Source Wastewater | Reactor Type | Rector Volume | SRT | OLR | Pre-Treatment | Methane Production (mL/g VS) | Biodegrdability | References |
---|---|---|---|---|---|---|---|---|---|
AGS | Swine manure | Batch | 0.4 L | - | - | Thermal: 170 °C | 337 mL/gVS | 62% | [30] |
AGS | Synthetic wastewater | Batch | 0.4 L | - | - | Thermal 210 °C | 404 mL/gVS | 58% | |
AGS | Brackish wastewater | CSTR | 5 L | - | 0.4–1.6 (gCOD/L/d) | - | 78–136 mL/gCOD | 23–42% | [23] |
AS | CSTR | 5 L | - | 1.5 (gCOD/L/d) | - | 94 mL/gCOD | 27% | ||
AGS | Swine manure | CSTR–Semi-continuous | 5 L | 10 days | 0.4–1.4 g/L | - | 208 mL/gVS | 44 | [24] |
WAS | - | 254 mL/gVS | 50 | ||||||
AGS | Thermal: 135 °C | 309 mL/gVS | 58 | ||||||
WAS | Thermal: 135 °C | 285 mL/gVS | 54 | ||||||
AGS | Synthetic wastewater | Batch | 0.6 L | 7 days | - | - | 0–0.1 mL/gVSS | - | [34] |
AS | Batch | 0.6 L | 7 days | - | - | 0–6 mL/gVSS | - | ||
AGS | Municipal | Batch | - | 21 days | 2–6 (kgVS/m3d) | - | 492.5 m3/kgVS | - | [25] |
AS | - | - | - | 2–6 (kgVS/m3d) | - | 1178.5 m3/kgVS | - | ||
PS:AGS (2:1) | - | - | - | 2–6 (kgVS/m3d) | - | 574.5 m3/kgVS | - | ||
PS: AS (2:1) | - | - | - | 2–6 (kgVS/m3d) | - | 1035.4 m3/kgVS | - | ||
AGS | Municipal | Semi-continuous | 0.525 L | 20 | 0.68–0.98 gCOD/Ld | - | 285 mL/gVSS | - | [22] |
AS | Semi-continuous | 0.525 L | 22 | 0.93 gCOD/Ld | - | 245 mL/gVSS | - | ||
AGS | Synthetic | - | - | - | - | - | 235 mL/gVS | - | [29] |
Steam Explosion: 170 °C | 370–400 mL/gVS | - | |||||||
AGS wasted | Municipal | - | - | - | - | - | 296.5 mL/gVS | - | [8] |
AGS washed-out | - | - | - | - | - | 192.9 mL/gVS | - | ||
WAS | - | - | - | - | - | 231.8 mL/gVS | - | ||
PS | - | - | - | - | - | 313.5 mL/gVS | - | ||
AGS | Municipal | Batch CSTR | 2 L | 44 days | - | - | 197 mL/gVS | - | [16] |
WAS | Batch CSTR | 2 L | 44 days | - | - | 242 mL/gVS | - | ||
AGS | Municipal | Batch | 1 L | 21 days | - | - | 215 (mL/g VS) | - | [27] |
Ultrasound homogenization | 300 (mL/g VS) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaghloul, M.S.; Halbas, A.M.; Hamza, R.A.; Elbeshbishy, E. Review on Digestibility of Aerobic Granular Sludge. Processes 2023, 11, 326. https://doi.org/10.3390/pr11020326
Zaghloul MS, Halbas AM, Hamza RA, Elbeshbishy E. Review on Digestibility of Aerobic Granular Sludge. Processes. 2023; 11(2):326. https://doi.org/10.3390/pr11020326
Chicago/Turabian StyleZaghloul, Mohamed S., Asmaa M. Halbas, Rania A. Hamza, and Elsayed Elbeshbishy. 2023. "Review on Digestibility of Aerobic Granular Sludge" Processes 11, no. 2: 326. https://doi.org/10.3390/pr11020326
APA StyleZaghloul, M. S., Halbas, A. M., Hamza, R. A., & Elbeshbishy, E. (2023). Review on Digestibility of Aerobic Granular Sludge. Processes, 11(2), 326. https://doi.org/10.3390/pr11020326