Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. General Method for CS-MB Hydrogels Fabrication
2.3. Characterization
2.4. Degree of Deacetylation of CS
2.5. Swelling Studies of CS-MB
2.6. Screening of Cu2+ Uptake of CS-MB
3. Results and Discussion
3.1. Fabrication Process Design
3.2. Physicochemical Properties
3.2.1. Degree of Deacetylation
3.2.2. FT-IR Characteristic Peaks and Elemental Analysis
3.2.3. Surface Characterization
3.2.4. Confirmation of CS-MB as a Hydrogel Material
3.2.5. Effects of pH of the Aqueous Medium on the Swelling Behavior of CS-MB
3.2.6. Effects of Temperature on the Swelling Behavior of CS-MB
3.3. Screening of Cu2+ Removal with CS-MB
4. Conclusions
- (i)
- A novel beta-amino ketone crosslinked chitosan (CS-MB) was fabricated by a single-step and one pot C-Mannich reaction.
- (ii)
- The equivalence ratio between CS, Glu, and 4-HC is crucial to achieve successful crosslinking with a feasible physical property.
- (iii)
- The CS-MB hydrogel showed a unique swelling behavior in response to pH and temperature in which an inversion of swelling capacity with time was observed in response to pH, whereas there is a decrease in the swelling capacity below the VPTT while an increase in the swelling capacity was observed at temperatures above the VPTT.
- (iv)
- The CS-MB exhibits adsorption activity against Cu2+ in aqueous medium.
- (v)
- The proposed adsorption sites for Cu2+ in CS-MB are from the 4-HC moiety: benzene ring by cation–π interaction and the ester group of the lactone ring by electrostatic interaction.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sultankulov, B.; Berillo, D.; Sultankulova, K.; Tokay, T.; Saparov, A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Nematidil, N.; Sadeghi, M.; Nezami, S.; Sadeghi, H. Synthesis and Characterization of Schiff-Base Based Chitosan-g-Glutaraldehyde/NaMMTNPs-APTES for Removal Pb2+ and Hg2+ Ions. Carbohydr. Polym. 2019, 222, 114971. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Abdulhameed, A.S.; Wilson, L.D.; Hanafiah, M.A.K.M.; Nawawi, W.I.; ALOthman, Z.A.; Rizwan Khan, M. Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology. J. Polym. Environ. 2021, 29, 2855–2868. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A Review on Chitosan-Based Flocculants and Their Applications in Water Treatment. Water Res. 2016, 95, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A. Genipin-Crosslinked Chitosan Hydrogels as Biomedical and Pharmaceutical Aids. Carbohydr. Polym. 2009, 77, 1–9. [Google Scholar] [CrossRef]
- Sahin, M.; Kocak, N.; Arslan, G.; Ucan, H.I. Synthesis of Crosslinked Chitosan with Epichlorohydrin Possessing Two Novel Polymeric Ligands and Its Use in Metal Removal. J. Inorg. Organomet. Polym. Mater. 2011, 21, 69–80. [Google Scholar] [CrossRef]
- Pestov, A.; Privar, Y.; Slobodyuk, A.; Boroda, A.; Bratskaya, S. Chitosan Cross-Linking with Acetaldehyde Acetals. Biomimetics 2022, 7, 10. [Google Scholar] [CrossRef]
- Martínez-Mejía, G.; Vázquez-Torres, N.A.; Castell-Rodríguez, A.; del Río, J.M.; Corea, M.; Jiménez-Juárez, R. Synthesis of New Chitosan-Glutaraldehyde Scaffolds for Tissue Engineering Using Schiff Reactions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123658. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.L.; Laranjeira, M.C.M.; Fávere, V.T.; Pedrosa, R.C. Effect of Crosslinking Agents on Chitosan Microspheres in Controlled Release of Diclofenac Sodium. Polímeros 2005, 15, 6–12. [Google Scholar] [CrossRef]
- Pinto, R.V.; Gomes, P.S.; Fernandes, M.H.; Costa, M.E.V.; Almeida, M.M. Glutaraldehyde-Crosslinking Chitosan Scaffolds Reinforced with Calcium Phosphate Spray-Dried Granules for Bone Tissue Applications. Mater. Sci. Eng. C 2020, 109, 110557. [Google Scholar] [CrossRef]
- Beppu, M.M.; Vieira, R.S.; Aimoli, C.G.; Santana, C.C. Crosslinking of Chitosan Membranes Using Glutaraldehyde: Effect on Ion Permeability and Water Absorption. J. Memb. Sci. 2007, 301, 126–130. [Google Scholar] [CrossRef]
- Mondal, S.; Li, C.; Wang, K. Bovine Serum Albumin Adsorption on Gluteraldehyde Cross-Linked Chitosan Hydrogels. J. Chem. Eng. Data 2015, 60, 2356–2362. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Wang, J.-L. Removal of Cesium from Radioactive Wastewater Using Magnetic Chitosan Beads Cross-Linked with Glutaraldehyde. Nucl. Sci. Tech. 2016, 27, 43. [Google Scholar] [CrossRef]
- Chen, M.; Yu, M.; Kang, R.; Sun, H.; Zhang, W.; Wang, S.; Wang, N.; Wang, J. Removal of Pb (II) and V (V) from Aqueous Solution by Glutaraldehyde Crosslinked Chitosan and Nanocomposites. Chemosphere 2022, 297, 134084. [Google Scholar] [CrossRef]
- Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. [Google Scholar] [CrossRef]
- Machado, T.S.; Crestani, L.; Marchezi, G.; Melara, F.; de Mello, J.R.; Dotto, G.L.; Piccin, J.S. Synthesis of Glutaraldehyde-Modified Silica/Chitosan Composites for the Removal of Water-Soluble Diclofenac Sodium. Carbohydr. Polym. 2022, 277, 118868. [Google Scholar] [CrossRef]
- Kildeeva, N.R.; Perminov, P.A.; Vladimirov, L.V.; Novikov, V.V.; Mikhailov, S.N. About Mechanism of Chitosan Cross-Linking with Glutaraldehyde. Russ. J. Bioorg. Chem. 2009, 35, 360–369. [Google Scholar] [CrossRef]
- Belho, K.; Ambasht, P.K. Immobilization of Phytase from Rice Bean (Vigna Umbellata Thunb.) on Glutaraldehyde Activated Chitosan Microspheres. J. Sci. Res. 2021, 65, 111–119. [Google Scholar] [CrossRef]
- Antony, R.; Arun, T.; Manickam, S.T.D. A Review on Applications of Chitosan-Based Schiff Bases. Int. J. Biol. Macromol. 2019, 129, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Wang, M.; Fang, K.; Zhao, Z.; Zhao, H.; Chen, W. Fabrication of Chitosan-Loaded Multifunctional Wool Fabric for Reactive Dye Digital Inkjet Printing by Schiff Base Reaction. Langmuir 2022, 38, 10081–10088. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Y.; Liu, X.; Li, S.; Ren, S.; Gao, Z.; Han, T.; Xu, Z.; Zhou, H. Glutaraldehyde Base-Cross-Linked Chitosan-Silanol/Fe3O4 Composite for Removal of Heavy Metals and Bacteria. Environ. Sci. Pollut. Res. 2022, 29, 69439–69449. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.K.; Shahi, V.K. Selective Adsorption of Pb(II) from Aqueous Medium by Cross-Linked Chitosan-Functionalized Graphene Oxide Adsorbent. ACS Sustain. Chem. Eng. 2019, 7, 1427–1436. [Google Scholar] [CrossRef]
- Zidan, T.A.; Abdelhamid, A.E.; Zaki, E.G. N-Aminorhodanine Modified Chitosan Hydrogel for Antibacterial and Copper Ions Removal from Aqueous Solutions. Int. J. Biol. Macromol. 2020, 158, 32–42. [Google Scholar] [CrossRef]
- Salehi, N.; Moghimi, A.; Shahbazi, H. Preparation of Cross-Linked Magnetic Chitosan with Methionine-Glutaraldehyde for Removal of Heavy Metals from Aqueous Solutions. Int. J. Environ. Anal. Chem. 2022, 102, 2305–2321. [Google Scholar] [CrossRef]
- Ge, H.; Du, J. Selective Adsorption of Pb(II) and Hg(II) on Melamine-Grafted Chitosan. Int. J. Biol. Macromol. 2020, 162, 1880–1887. [Google Scholar] [CrossRef]
- Simplício, A.L.; Clancy, J.M.; Gilmer, J.F. β-Aminoketones as Prodrugs with PH-Controlled Activation. Int. J. Pharm. 2007, 336, 208–214. [Google Scholar] [CrossRef]
- Tajmir-Riahi, H.A. Carbohydrate metal ion complexes. Interaction of D-glucono-1, 5-lactone with Zn (II), Cd (II), and Hg (II) ions in the solid and aqueous solution, studied by 13C-NMR, FT-IR, and X-ray powder diffraction measurements. Can. J. Chem. 1989, 67, 651–654. [Google Scholar] [CrossRef]
- Charles, R.; Cleary, J. Vapor Phase Deposition of Metal from a Metal-Organic Beta-Ketoamine Chelate. U.S. Patent 3,594,216, 20 July 1971. [Google Scholar]
- Esseffar, M.; Mó, O.; Yáñez, M. Gas-Phase Reactivity of Lactones: Structure and Stability of Their Cu+ Complexes. Mol. Phys. 2003, 101, 1249–1258. [Google Scholar] [CrossRef]
- Balcıoğlu, S.; Olgun Karataş, M.; Ateş, B.; Alıcı, B.; Özdemir, İ. Therapeutic Potential of Coumarin Bearing Metal Complexes: Where Are We Headed? Bioorg. Med. Chem. Lett. 2020, 30, 126805. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Savetsakulanont, J.; Chalitangkoon, J.; Monvisade, P. Stimuli-Responsive, Self-Healing, and Injectable Hydrogels with Dual-Crosslinked Design from Phenolphthalein-Grafted N-Carboxyethyl Chitosan. Macromol. Mater. Eng. 2021, 306, 2100287. [Google Scholar] [CrossRef]
- Martínez-Martínez, M.; Rodríguez-Berna, G.; Bermejo, M.; Gonzalez-Alvarez, I.; Gonzalez-Alvarez, M.; Merino, V. Covalently Crosslinked Organophosphorous Derivatives-Chitosan Hydrogel as a Drug Delivery System for Oral Administration of Camptothecin. European Journal of Pharmaceutics and Biopharmaceutics 2019, 136, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xia, W.; Jiang, Q.; Yu, P.; Yue, L. Chitosan Oligosaccharide-N-Chlorokojic Acid Mannich Base Polymer as a Potential Antibacterial Material. Carbohydr Polym 2018, 182, 225–234. [Google Scholar] [CrossRef]
- Franzén, H.; Draget, K.; Langebäck, J.; Nilsen-Nygaard, J. Characterization and Properties of Hydrogels Made from Neutral Soluble Chitosans. Polymers 2015, 7, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, O.A.C.; Airoldi, C. Some Studies of Crosslinking Chitosan-Glutaraldehyde Interaction in a Homogeneous System. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Hosoya, O.; Taoka, S.; Seki, T.; Kawaguchi, T.; Sugibayashi, K.; Juni, K.; Morimoto, Y. Relationship between Solubility of Chitosan in Alcoholic Solution and Its Gelation. Chem. Pharm. Bull. 1999, 47, 1044–1046. [Google Scholar] [CrossRef] [Green Version]
- Cummings, T.F.; Shelton, J.R. Mannich Reaction Mechanisms. J. Org Chem. 1960, 25, 419–423. [Google Scholar] [CrossRef]
- Umashankar, T.; Govindappa, M.; Yarappa Lakshmikantha, R.; Padmalatha Rai, S.; Channabasava, R. Isolation and Characterization of Coumarin Isolated from Endophyte, Alternaria Species -1 of Crotalaria Pallida and Its Apoptotic Action on HeLa Cancer Cell Line. J. Postgenomics Drug Biomark. Dev. 2015, 05, 158. [Google Scholar] [CrossRef] [Green Version]
- Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical Properties of Hydrogels and Their Experimental Determination. Biomaterials 1996, 17, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Dimida, S.; Demitri, C.; de Benedictis, V.M.; Scalera, F.; Gervaso, F.; Sannino, A. Genipin-Cross-Linked Chitosan-Based Hydrogels: Reaction Kinetics and Structure-Related Characteristics. J. Appl. Polym. Sci. 2015, 132, 42256. [Google Scholar] [CrossRef]
- Qu, X.; Wirsén, A.; Albertsson, A.-C. Novel PH-Sensitive Chitosan Hydrogels: Swelling Behavior and States of Water. Polymer 2000, 41, 4589–4598. [Google Scholar] [CrossRef]
- Ren, J.; Wang, X.; Zhao, L.; Li, M.; Yang, W. Double Network Gelatin/Chitosan Hydrogel Effective Removal of Dyes from Aqueous Solutions. J. Polym. Environ. 2022, 30, 2007–2021. [Google Scholar] [CrossRef]
- Ghauri, Z.H.; Islam, A.; Qadir, M.A.; Gull, N.; Haider, B.; Khan, R.U.; Riaz, T. Development and Evaluation of PH-Sensitive Biodegradable Ternary Blended Hydrogel Films (Chitosan/Guar Gum/PVP) for Drug Delivery Application. Sci. Rep. 2021, 11, 21255. [Google Scholar] [CrossRef]
- Arikibe, J.E.; Lata, R.; Kuboyama, K.; Ougizawa, T.; Rohindra, D. PH-Responsive Studies of Bacterial Cellulose /Chitosan Hydrogels Crosslinked with Genipin: Swelling and Drug Release Behaviour. ChemistrySelect 2019, 4, 9915–9926. [Google Scholar] [CrossRef]
- Nowak, P.M.; Sagan, F.; Mitoraj, M.P. Origin of Remarkably Different Acidity of Hydroxycoumarins—Joint Experimental and Theoretical Studies. J. Phys. Chem. B 2017, 121, 4554–4561. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.-Z.; Chu, C.-C. Formulation and Characterization of Chitosan-Based Hydrogel Films Having Both Temperature and PH Sensitivity. J. Mater. Sci. Mater. Med. 2007, 18, 1563–1577. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Argüelles-Monal, W.M.; Lizardi, J.; Peniche, C.; Heras, A.; Galed, G.; Díaz, E.I. Temperature and PH-Sensitive Chitosan Hydrogels: DSC, Rheological and Swelling Evidence of a Volume Phase Transition. Polym. Bull. 2007, 58, 225–234. [Google Scholar] [CrossRef]
- Sadeghi, M. Synthesis of a Biocopolymer Carrageenan-g-Poly(AAm-Co-IA)/ Montmorilonite Superabsorbent Hydrogel Composite. Braz. J. Chem. Eng. 2012, 29, 295–305. [Google Scholar] [CrossRef]
- Simmons, D.S. Phase and Conformational Behavior of LCST-Driven Stimuli Responsive Polymers; The University of Texas: Austin, TX, USA, 2009. [Google Scholar]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive Sol–Gel Reversible Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Drozdov, A.D. Volume Phase Transition in Thermo-Responsive Hydrogels: Constitutive Modeling and Structure–Property Relations. Acta Mech. 2015, 226, 1283–1303. [Google Scholar] [CrossRef]
- Castillo-Henríquez, L.; Sanabria-Espinoza, P.; Murillo-Castillo, B.; Montes de Oca-Vásquez, G.; Batista-Menezes, D.; Calvo-Guzmán, B.; Ramírez-Arguedas, N.; Vega-Baudrit, J. Topical Chitosan-Based Thermo-Responsive Scaffold Provides Dexketoprofen Trometamol Controlled Release for 24 h Use. Pharmaceutics 2021, 13, 2100. [Google Scholar] [CrossRef] [PubMed]
- Durell, S.R.; Ben-Naim, A. Temperature Dependence of Hydrophobic and Hydrophilic Forces and Interactions. J. Phys. Chem. B 2021, 125, 13137–13146. [Google Scholar] [CrossRef]
- Khuri, R.R.; Phan, T.V.; Austin, R.H. Protein Dynamics Implications of the Low- and High-Temperature Denaturation of Myoglobin. Phys. Rev. E 2021, 104, 034414. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper Environmental Toxicology, Recent Advances, and Future Outlook: A Review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- National Research Council (U.S.). Copper in Drinking Water; National Academy Press: Washington, DC, USA, 2000; ISBN 0309069394. [Google Scholar]
- Kamal, M.A.; Yasin, T.; Reinert, L.; Duclaux, L. Adsorptive Removal of Copper (II) Ions from Aqueous Solution by Silane Cross-Linked Chitosan/PVA/TEOS Beads: Kinetics and Isotherms. Desalination Water Treat. 2016, 57, 4037–4048. [Google Scholar] [CrossRef]
- Patrulea, V.; Negrulescu, A.; Mincea, M.M.; Pitulice, L.D.; Spiridon, O.B.; Ostafe, V. Optimization of the Removal of Copper(II) Ions from Aqueous Solution on Chitosan and Cross-Linked Chitosan Beads. Bioresources 2013, 8, 1147–1165. [Google Scholar] [CrossRef] [Green Version]
- Timur, M.; Paşa, A. Synthesis, Characterization, Swelling, and Metal Uptake Studies of Aryl Cross-Linked Chitosan Hydrogels. ACS Omega 2018, 3, 17416–17424. [Google Scholar] [CrossRef]
- Sesia, R.; Ferraris, S.; Sangermano, M.; Spriano, S. UV-Cured Chitosan-Based Hydrogels Strengthened by Tannic Acid for the Removal of Copper Ions from Water. Polymers 2022, 14, 4645. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Manzoor, K.; Venkatachalam, P.; Ikram, S. Kinetic and Thermodynamic Evaluation of Adsorption of Cu(II) by Thiosemicarbazide Chitosan. Int. J. Biol. Macromol. 2016, 92, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Zhang, B.; Wang, J.; Xu, J.; Manzoor, K.; Ahmad, S.; Ikram, S. New Method for Hydrogel Synthesis from Diphenylcarbazide Chitosan for Selective Copper Removal. Int. J. Biol. Macromol. 2019, 136, 189–198. [Google Scholar] [CrossRef]
- Yi, H.-B.; Lee, H.M.; Kim, K.S. Interaction of Benzene with Transition Metal Cations: Theoretical Study of Structures, Energies, and IR Spectra. J. Chem. Theory. Comput. 2009, 5, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
Parameters | Outcome |
---|---|
CS Final Concentration | |
1.7% w/v 1.8% w/v 2.2% w/v 2.5% w/v |
|
Molar equivalence | |
1 eq. CS only 1 eq. CS, 10 eq. Glu, 20 eq. 4-HC 1 eq. CS, 15 eq. Glu, 30 eq. 4-HC 1 eq. CS, 40 eq. Glu, 80 eq. 4-HC 1 eq. CS, 60 eq. Glu, 160 eq. 4-HC 1 eq. CS, 20 eq. Glu, 40 eq. 4-HC |
|
Linker solution 3% v/v acetic acid (AcOH) 100% Ethanol (EtOH) 8: 2 EtOH to 3% v/v AcOH |
|
Composition (%) | C | N | O | Others | C/N |
---|---|---|---|---|---|
CS film | 49.46 | 6.71 | 43.64 | 0.20 | 7.37 |
CS-MB | 55.31 | 5.48 | 39.15 | 0.08 | 10.09 |
Hydrogel | Max Adsorption Dosage (g/L) | Max Adsorption Capacity (mg/g) | Reference |
---|---|---|---|
CS-MB film | 1.25 | 12 | This work |
CS beads | 0.20 | 86.3 | [61] |
CS-Glu beads | 10 | 2.3 | [62] |
CS-aryl | 1.0 | 59.6 | [63] |
CS-tannic acid | 0.7 | 11.04 | [64] |
CS-thiosemicarbazide | 1.5 | 47.16 | [65] |
CS-Diphenylcarbazide | 1.0 | 185.51 | [66] |
Assigned Group | Fresh CS-MB | Spent CS-MB |
---|---|---|
Aromatic C-H stretching | 3090 cm−1 | IR inactive |
Asymmetric C-H stretch | 2874 cm−1 | IR inactive |
C=O lactone vibration | 1652 cm−1 | 1687 cm−1 |
C=C ring distortion | 1613 cm−1 | 1648 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romal, J.R.A.; Ong, S.K. Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake. Processes 2023, 11, 354. https://doi.org/10.3390/pr11020354
Romal JRA, Ong SK. Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake. Processes. 2023; 11(2):354. https://doi.org/10.3390/pr11020354
Chicago/Turabian StyleRomal, John Rey Apostol, and Say Kee Ong. 2023. "Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake" Processes 11, no. 2: 354. https://doi.org/10.3390/pr11020354
APA StyleRomal, J. R. A., & Ong, S. K. (2023). Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake. Processes, 11(2), 354. https://doi.org/10.3390/pr11020354