Determination of Electrogenic Potential and Removal of Organic Matter from Industrial Coffee Wastewater Using a Native Community in a Non-Conventional Microbial Fuel Cell
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Determination of Electrogenic Potential and Removal of Organic Matter
3.2. Statistical Analysis
3.3. Formatting of Mathematical Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Experiment | Electrical Resistance (Ω) | DP (mW·m−2) | DI (mA·m−2) |
---|---|---|---|
M1 | 1000 | 9.2 | 1.1 |
M1.1 | 3800 | 73.1 | 1.5 |
M2 | 3800 | 17.8 | 0.8 |
M2.1 | 2200 | 203.7 | 3.4 |
M3 | 12,000 | 20.8 | 0.5 |
M3.1 | 3800 | 289.6 | 3.1 |
M4 | 3800 | 230.2 | 2.7 |
M4.1 | 1000 | 286.0 | 16.1 |
M5 | 3800 | 372.3 | 3.5 |
M5.1 | 1000 | 205.0 | 5.1 |
M6 | 3800 | 941.5 | 5.5 |
M6.1 | 3800 | 293.1 | 3.1 |
M7 | 15,000 | 155.1 | 1.1 |
M7.1 | 12,000 | 403.0 | 2.1 |
M8 | 100 | 343.8 | 20.1 |
M8.1 | 620 | 337.5 | 8.2 |
C1 | 1000 | 11.0 | 0.0 |
C1.1 | 10,000 | 161.0 | 1.4 |
C2 | 1000 | 868.6 | 10.4 |
C2.1 | 1000 | 247.7 | 5.6 |
References
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association: Washington, DC, USA, 2012; ISBN 9780875532356. [Google Scholar]
- Campos, R.C.; Pinto, V.R.A.; Melo, L.F.; da Rocha, S.J.S.S.; Coimbra, J.S. New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. Future Foods 2021, 4, 100058. [Google Scholar] [CrossRef]
- Ijanu, E.M.; Kamaruddin, M.A.; Norashiddin, F.A. Coffee processing wastewater treatment: A critical review on current treatment technologies with a proposed alternative. Appl. Water Sci. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, C.; Ramírez, C.; Rodríguez, N.; Sanz, J.; Tibaduiza, C. Manejo y aprovechamiento de las aguas residuales del lavado del café con la tecnología ECOMILL®. Av. Técnicos Cenicafé 2022, 538, 1–8. [Google Scholar] [CrossRef]
- Federación Nacional de Cafeteros. Estadísticas Cafeteras. 2021. Available online: https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed on 17 August 2021).
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Rodríguez González, M.A.; González Guzmán, J.M.; Camargo Mayorga, D.A. Avances En El Saneamiento Y La Gestión De Biosólidos En Colombia. Rev. Fac. Cienc. Contab. Econ. Adm.—FACCEA 2019, 9, 113–126. [Google Scholar] [CrossRef]
- Martínez, I.; Santiago, C.A.; Limón, R.A.; López, V.; Aguilar, F.A. Tratamiento de agua residual de beneficio de café mediante un biofiltro de bajo costo. Ingeniantes 2021, 1, 60–67. [Google Scholar]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Bittencourt Sydney, E.; Bianchi Pedroni Medeiros, A.; Magalhães, A.I.; de Carvalho, J.C.; Karp, S.G.; Porto de Souza Vandenberghe, L.; Junior Letti, L.A.; Thomaz Soccol, V.; de Melo Pereira, G.V.; et al. Agro-industrial wastewater in a circular economy: Characteristics, impacts and applications for bioenergy and biochemicals. Bioresour. Technol. 2021, 341, 125795. [Google Scholar] [CrossRef]
- Palanisamy, G.; Jung, H.; Sadhasivam, T.; Kurkuri, M.; Kim, S.; Roh, S. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod. 2019, 221, 598–621. [Google Scholar] [CrossRef]
- Gul, M.; Ahmad, K. Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosens. Bioelectron. 2019, 142, 111576. [Google Scholar] [CrossRef]
- Chen, H.; Dong, F.; Minteer, S.D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 2020, 3, 225–244. [Google Scholar] [CrossRef]
- Dange, P.; Pandit, S.; Jadhav, D.; Shanmugam, P.; Gupta, P.K.; Kumar, S.; Kumar, M.; Yang, Y.-H.; Bhatia, S.K. Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability 2021, 13, 8796. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Wang, L.; Quan, X. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci. Rep. 2015, 5, 11094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; He, Z. Cathode-enhanced wastewater treatment in bioelectrochemical systems. npj Clean Water 2018, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef]
- Gadkari, S.; Shemfe, M.; Sadhukhan, J. Microbial fuel cells: A fast converging dynamic model for assessing system performance based on bioanode kinetics. Int. J. Hydrogen Energy 2019, 44, 15377–15386. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Malyan, S.K.; Sharma, J.; Mathimani, T.; Maskarenj, M.S.; Ghosh, P.C.; Pugazhendhi, A. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel 2019, 254, 115526. [Google Scholar] [CrossRef]
- Verma, P.; Daverey, A.; Kumar, A.; Arunachalam, K. Microbial Fuel Cell—A Sustainable Approach for Simultaneous Wastewater Treatment and Energy Recovery. J. Water Process Eng. 2021, 40, 101768. [Google Scholar] [CrossRef]
- Sreedharan, S.; Pawels, R. Feasibility study on treatment of coconut industry wastewater and bioenergy production using microbial fuel cell (MFC). Int. J. Environ. Sci. Technol. 2022, 19, 5333–5342. [Google Scholar] [CrossRef]
- Sivasankar, P.; Poongodi, S.; Seedevi, P.; Sivakumar, M.; Murugan, T.; Loganathan, S. Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. J. Environ. Manag. 2019, 237, 84–93. [Google Scholar] [CrossRef]
- Asefi, B.; Li, S.L.; Moreno, H.A.; Sanchez-Torres, V.; Hu, A.; Li, J.; Yu, C.P. Characterization of electricity production and microbial community of food waste-fed microbial fuel cells. Process Saf. Environ. Prot. 2019, 125, 83–91. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, L.; He, X.; Ma, H.; Fu, H.; Wang, J.; Ren, H. Effect of continuous and intermittent electric current on lignin wastewater treatment and microbial community structure in electro-microbial system. Sci. Rep. 2019, 9, 805. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Zhang, H.; Han, L.; Mei, J.; Ge, Q.; Long, Z.; Yu, Y. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environ. Pollut. 2018, 243, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Allam, F.; Elnouby, M.; Sabry, S.A.; El-Khatib, K.M.; El-Badan, D.E. Optimization of factors affecting current generation, biofilm formation and rhamnolipid production by electroactive Pseudomonas aeruginosa FA17. Int. J. Hydrogen Energy 2021, 46, 11419–11432. [Google Scholar] [CrossRef]
- Almatouq, A.; Babatunde, A.O.; Khajah, M.; Webster, G.; Alfodari, M. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J. Water Process Eng. 2020, 34, 101140. [Google Scholar] [CrossRef]
- Obata, O.; Greenman, J.; Kurt, H.; Chandran, K.; Ieropoulos, I. Microbial Fuel Cell anodic bacterial community and antibacterial agents: Resilience and vulnerability test. Bioelectrochemistry 2020, 134, 107500. [Google Scholar] [CrossRef]
- Shen, J.; Du, Z.; Li, J.; Cheng, F. Co-metabolism for enhanced phenol degradation and bioelectricity generation in microbial fuel cell. Bioelectrochemistry 2020, 134, 107527. [Google Scholar] [CrossRef]
- Long, X.; Cao, X.; Song, H.; Nishimura, O.; Li, X. Characterization of electricity generation and microbial community structure over long-term operation of a microbial fuel cell. Bioresour. Technol. 2019, 285, 121395. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, D.; Xiao, E.; Xu, D.; Xu, P.; Zhang, X.; Zhou, Q.; He, F.; Wu, Z. Relationship between electrogenic performance and physiological change of four wetland plants in constructed wetland-microbial fuel cells during non-growing seasons. J. Environ. Sci. 2018, 70, 54–62. [Google Scholar] [CrossRef]
- Ishii, S.; Suzuki, S.; Tenney, A.; Norden-Krichmar, T.; Nealson, K.; Bretschger, O. Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach. Sci. Rep. 2015, 5, 14840. [Google Scholar] [CrossRef] [Green Version]
- Pires, J.F.; Viana, D.C.; Braga, R.A.; Schwan, R.F.; Silva, C.F. Protocol to select efficient microorganisms to treat coffee wastewater. J. Environ. Manag. 2021, 278 Pt 2, 111541. [Google Scholar] [CrossRef]
- Agudelo-Escobar, L.; Erazo, S.; Avignone-Rossa, C. A Bioelectrochemical system for waste industrial coffee waste water. Front. Chem. Eng. 2022, 4, 814987. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. Bioaugmentation using Pseudomonas aeruginosa with an approach of intermittent aeration for enhanced power generation in ceramic MFC. Sustain. Energy Technol. Assess. 2021, 45, 101138. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF. 5220 Chemical Oxygen Demand (COD). Standard Methods for the Examination of Water and Wastewater. 2017. Available online: https://www.standardmethods.org/doi/10.2105/SMWW.2882.103 (accessed on 25 February 2020).
- Xin, X.; Hong, J.; Liu, Y. Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate. Sci. Total Environ. 2019, 670, 50–58. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Li, X.; Wang, Y.; Jin, P.; Zheng, Y.; Huang, J.; Li, Q. Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. J. Environ. Manag. 2019, 248, 109310. [Google Scholar] [CrossRef]
- Munjal, M.; Tiwari, B.; Lalwani, S.; Sharma, M.; Singh, G.; Sharma, R.K. An insight of bioelectricity production in mediator less microbial fuel cell using mesoporous Cobalt Ferrite anode. Int. J. Hydrogen Energy 2020, 45, 12525–12534. [Google Scholar] [CrossRef]
- Liang, P.; Duan, R.; Jiang, Y.; Zhang, X.; Qiu, Y.; Huang, X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gajda, I.; Greenman, J.; Ieropoulos, I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 2020, 262, 114475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, C.; Xu, Y.; Li, H.; Shi, W.; Xie, X.; Lu, M.; Huang, L.; Huang, W. Accelerating the startup of microbial fuel cells by facile microbial acclimation. Bioresour. Technol. Rep. 2019, 8, 100347. [Google Scholar] [CrossRef]
- Rago, L.; Cristiani, P.; Villa, F.; Zecchin, S.; Colombo, A.; Cavalca, L.; Schievano, A. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 2017, 116, 39–51. [Google Scholar] [CrossRef]
- Mei, X.; Xing, D.; Yang, Y.; Liu, Q.; Zhou, H.; Guo, C.; Ren, N. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry 2017, 117, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Yang, Y.; Tang, M.; Wang, R.; Jiang, L.; Tian, Y.; Hu, H.; Zhang, X.; Wei, Y. Bacterial community structure and gene function prediction in response to long-term running of dual graphene modified bioelectrode bioelectrochemical systems. Bioresour. Technol. 2020, 309, 123398. [Google Scholar] [CrossRef]
- Toczyłowska-Mamińska, R.; Szymona, K.; Król, P.; Gliniewicz, K.; Pielech-Przybylska, K.; Kloch, M.; Logan, B.E. Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 2018, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Xiao, N.; Selvaganapathy, P.R.; Wu, R.; Huang, J.J. Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. Bioresour. Technol. 2020, 302, 122777. [Google Scholar] [CrossRef]
- Saratale, G.; Saratale, R.; Shahid, M.; Zhen, G.; Kumar, G.; Shin, H.S.; Choi, Y.G.; Kim, S.H. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere 2017, 178, 534–547. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Y.; Li, D.; Ambuchi, J.; He, W.; Zhou, X.; Liu, J.; Feng, Y. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities. Sci. Rep. 2016, 6, 27023. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Xie, B.; Zhao, T.; Li, Z.; Stom, D.; Liu, H. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry 2019, 125, 71–78. [Google Scholar] [CrossRef]
- Arkatkar, A.; Mungray, A.K.; Sharma, P. Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochem. 2021, 101, 213–217. [Google Scholar] [CrossRef]
- Hou, R.; Luo, X.; Liu, C.; Zhou, L.; Wen, J.; Yuan, Y. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms. Environ. Pollut. 2019, 254, 113040. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Mousavi, S.A.; Darvishi, P. Effect of ammonium and COD concentrations on the performance of fixed-bed air-cathode microbial fuel cells treating reject water. Int. J. Hydrogen Energy 2020, 45, 4887–4896. [Google Scholar] [CrossRef]
- Salar-García, M.J.; Ortiz-Martínez, V.M.; Gajda, I.; Greenman, J.; Hernández-Fernández, F.J.; Ieropoulos, I.A. Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Sep. Purif. Technol. 2017, 187, 436–442. [Google Scholar] [CrossRef]
- Cárdenas, D.; Villegas, J.R.; Solís, C.; Sanabria-Chinchilla, J.; Uribe, L.; Fuentes-Schweizer, P. Evaluación del desempeño de una celda de combustible microbiana con electrodo de grafito modificado para el tratamiento de agua residual del procesamiento del café. Química Apl. Anal. 2022, 51, 40–47. [Google Scholar] [CrossRef]
- Wang, Q.; Lv, R.; Rene, E.R.; Qi, X.; Hao, Q.; Du, Y.; Zhao, C.; Xu, F.; Kong, Q. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater. Bioresour. Technol. 2020, 302, 122867. [Google Scholar] [CrossRef] [PubMed]
- Modestra, J.A.; Reddy, C.N.; Krishna, K.V.; Min, B.; Mohan, S.V. Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell. Renew. Energy 2020, 149, 424–434. [Google Scholar] [CrossRef]
- Zhang, S.; You, J.; Chen, H.; Ye, J.; Cheng, Z.; Chen, J. Gaseous toluene, ethylbenzene, and xylene mixture removal in a microbial fuel cell: Performance, biofilm characteristics, and mechanisms. Chem. Eng. J. 2020, 386, 123916. [Google Scholar] [CrossRef]
- Ur, Z.; Fortunato, L.; Cheng, T.; Leiknes, T. Metagenomic analysis of sludge and early-stage biofilm communities of a submerged membrane bioreactor. Sci. Total Environ. 2020, 701, 134682. [Google Scholar] [CrossRef]
- Tao, M.; Guan, L.; Jing, Z.; Tao, Z.; Wang, Y.; Luo, H.; Wang, Y. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland. Sci. Total Environ. 2020, 709, 136159. [Google Scholar] [CrossRef]
- Ge, X.; Cao, X.; Song, X.; Wang, Y.; Si, Z.; Zhao, Y.; Wang, W.; Tesfahunegn, A.A. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour. Technol. 2020, 296, 122350. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, D.; Shen, X.; Liu, W.; Yi, W.; Li, Z.; Liu, S. Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell. Renew. Energy 2019, 142, 158–166. [Google Scholar] [CrossRef]
- Deng, Q.; Su, C.; Lu, X.; Chen, W.; Guan, X.; Chen, S.; Chen, M. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system. Bioresour. Technol. 2020, 306, 123173. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Xue, H.; Qiu, D.; Huang, Z.; Wang, N. Bioenergy generation and nitrogen removal in a novel ecological-microbial fuel cell. Chemosphere 2021, 278, 130450. [Google Scholar] [CrossRef] [PubMed]
Experiment | Inoculum | Culture Media/Substrate |
---|---|---|
M1 and M5 | Mixed inoculum (I1) | Fermentation CWW (S1) |
M2 and M6 | Mixed inoculum (I1) | Leached CWW (S2) |
M3 and M7 | Maturated inoculum (I2) | Leached CWW (S2) |
M4 and M8 | Maturated inoculum (I2) | Fermentation CWW (S1) |
Control 1 (C1) | Mixed inoculum (I1) | Reference electrogenic medium |
Control 2 (C2) | Maturated inoculum (I2) | Reference electrogenic medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo, S.; Agudelo-Escobar, L.M. Determination of Electrogenic Potential and Removal of Organic Matter from Industrial Coffee Wastewater Using a Native Community in a Non-Conventional Microbial Fuel Cell. Processes 2023, 11, 373. https://doi.org/10.3390/pr11020373
Erazo S, Agudelo-Escobar LM. Determination of Electrogenic Potential and Removal of Organic Matter from Industrial Coffee Wastewater Using a Native Community in a Non-Conventional Microbial Fuel Cell. Processes. 2023; 11(2):373. https://doi.org/10.3390/pr11020373
Chicago/Turabian StyleErazo, Santiago, and Lina María Agudelo-Escobar. 2023. "Determination of Electrogenic Potential and Removal of Organic Matter from Industrial Coffee Wastewater Using a Native Community in a Non-Conventional Microbial Fuel Cell" Processes 11, no. 2: 373. https://doi.org/10.3390/pr11020373
APA StyleErazo, S., & Agudelo-Escobar, L. M. (2023). Determination of Electrogenic Potential and Removal of Organic Matter from Industrial Coffee Wastewater Using a Native Community in a Non-Conventional Microbial Fuel Cell. Processes, 11(2), 373. https://doi.org/10.3390/pr11020373