Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. The Production of Seaweed Extract and Biosynthesis of ZnO NPs
2.3. Characteristics of Sargassum Extract
2.4. Characteristics of Zinc Oxide Nanoparticles
2.5. (Bio)Sorption Properties of (Bio)Sorbents
3. Results and Discussion
3.1. Characteristics of Sargassum Extract
3.2. Characteristics of Zinc Oxide Nanoparticles
3.3. Sorption Properties of Different Sorbents towards Cr(III) Ions
3.4. Effect of pH on the Sorption Process
3.5. Effect of the Initial Concentration of Cr(III) Ions on the Sorption Process
3.6. Sorption Equilibrium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheela, T.; Nayaka, Y.A.; Viswanatha, R.; Basavanna, S.; Venkatesha, T.G. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol. 2012, 217, 163–170. [Google Scholar] [CrossRef]
- Mohamed, H.S.; Soliman, N.K.; Abdelrheem, D.A.; Ramadan, A.A.; Elghandour, A.H.; Ahmed, S.A. Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent. Heliyon 2019, 5, e01287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.; Hao, L.; Wang, Y.; Li, X.; Chen, Y.; Li, W.; Jiang, L. The selective heavy metal ions adsorption of zinc oxide nanoparticles from dental wastewater. Chem. Phys. 2020, 534, 110750. [Google Scholar] [CrossRef]
- Kumar, K.Y.; Muralidhara, H.B.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 2013, 246, 125–136. [Google Scholar] [CrossRef]
- Azizi, S.; Mahdavi Shahri, M.; Mohamad, R. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Molecules 2017, 22, 831. [Google Scholar] [CrossRef] [PubMed]
- Nalwa, K.; Thakur, A.; Sharma, N. Synthesis of ZnO nanoparticles and its application in adsorption. Adv. Mater. Proc. 2017, 2, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Mesquita Vieira, D.; Augusto da Costa, A.C.; Assumpção Henriques, C.; Luiz Cardoso, V.; Pessôa de França, F. Biosorption of lead by brown seaweed Sargassum filipendula—Batch and continuous pilot studies. Electron. J. Biotechnol. 2007, 10, 368–375. [Google Scholar] [CrossRef]
- Benaisa, S.; Arhoun, B.; El Mail, R.; Rodriguez-Maroto, J.M. Potential of brown algae biomass as new biosorbent of iron: Kinetic, equilibrium and thermodynamic study. J. Mater. Environ. Sci. 2018, 9, 2131–2141. [Google Scholar]
- Barquilha, C.E.R.; Cossich, E.S.; Tavares, C.R.G.; Silva, E.A. Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J. Clean. Prod. 2017, 150, 58–64. [Google Scholar] [CrossRef]
- Cossich, E.S.; Tavares, C.R.G.; Ravagnani, T.M.G. Biosorption of chromium(III) by Sargassum sp. biomass. Electron. J. Biotechnol. 2002, 5, 6–7. [Google Scholar] [CrossRef]
- Cossich, E.S.; da Silva, E.A.; Tavares, C.R.G.; Ravagnani, T.M.G. Biosorption of chromium (III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 2004, 10, 129–138. [Google Scholar] [CrossRef]
- Tamilselvan, N.; Saurav, K.; Kannabiran, K. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemose algal biomass. J. Ocean Univ. China 2012, 11, 52–58. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhao, F.J. Biosorption of chromium(VI) from aqueous solutions by Sargassum thunbergii Kuntze. Biotechnol. Biotechnol. Equip. 2014, 28, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 2014, 116, 275–277. [Google Scholar] [CrossRef]
- Rupa, E.J.; Anandapadmanaban, G.; Mathiyalagan, R.; Yang, D.C. Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik 2018, 172, 1179–1186. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience 2020, 10, 848–863. [Google Scholar] [CrossRef]
- Elrefaey, A.A.K.; El-Gamal, A.D.; Hamed, S.M.; El-belely, E.F. Algae-mediated biosynthesis of zinc oxide nanoparticles from Cystoseira crinite (Fucales; Sargassaceae) and it’s antimicrobial and antioxidant activities. Egypt. J. Chem. 2022, 65, 231–240. [Google Scholar] [CrossRef]
- Dziergowska, K.; Wełna, M.; Szymczycha-Madeja, A.; Chęcmanowski, J.; Michalak, I. Valorization of Cladophora glomerata biomass and obtained bioproducts into biostimulants of plant growth and as sorbent (biosorbents) of metal ions. Molecules 2021, 26, 6917. [Google Scholar] [CrossRef]
- Bertagnolli, C.; de Silva, M.G.; Guibal, E. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chem. Eng. J. 2014, 237, 362–371. [Google Scholar] [CrossRef]
- Cardoso, S.L.; Costa, C.S.D.; Nishikawa, E.; da Silva, M.G.C.; Vieira, M.G.A. Biosorption of toxic metals using the alginate extraction residue from the brown algae Sargassum filipendula as a natural ion-exchanger. J. Clean. Prod. 2017, 165, 491–499. [Google Scholar] [CrossRef]
- Vaishnav, J.; Subha, V.; Kirubanandan, S.; Arulmozhi, M.; Renganathan, S. Green synthesis of zinc oxide nanoparticles by Celosia argentea and its characterization. J. Optoelectron. Biomed. Mater. 2017, 9, 59–71. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Papirio, S.; Frunzo, L.; Mattei, M.R.; Ferraro, A.; Race, M.; D’Acunto, B.; Pirozzi, F.; Esposito, G. Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling. Environ. Chem. A Sustain. World 2017, 8, 25–63. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. The new application of biosorption properties of Enteromorpha prolifera. Appl. Biochem. Biotechnol. 2010, 160, 1540–1556. [Google Scholar] [CrossRef]
- Cazón, J.P.H.; Benítez, L.; Donati, E.; Viera, M. Biosorption of chromium(III) by two brown algae Macrocystis pyrifera and Undaria pinnatifida: Equilibrium and kinetic study. Eng. Life Sci. 2012, 12, 95–103. [Google Scholar] [CrossRef]
- Martín, A.P.; Aguilar, M.I.; Meseguer, V.F.; Ortuno, J.F.; Sáez, J.; Lloréns, M. Biosorption of chromium (III) by orange (Citrus cinensis) waste: Batch and continuous studies. Chem. Eng. J. 2009, 155, 199–206. [Google Scholar] [CrossRef]
- Jha, D.; Haider, M.B.; Kumar, R.; Byamba-Ochir, N.; Shim, W.G.; Marriyappan Sivagnanam, B.; Moon, H. Enhanced adsorptive desulfurization using Mongolian anthracite-based activated carbon. ACS Omega 2019, 4, 20844–20853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O.J. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Y.; Tan, J.; Owens, G.; Chen, Z. Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. J. Clean. Prod. 2018, 176, 929–936. [Google Scholar] [CrossRef]
- Bourebaba, L.; Michalak, I.; Röcken, M.; Marycz, K. Cladophora glomerata methanolic extract decreases oxidative stress and improves viability and mitochondrial potential in equine adipose derived mesenchymal stem cells (ASCs). Biomed. Pharmacother. 2019, 111, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Fazlzadeh, M.; Khosravi, R.; Zarei, A. Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmana seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution. Ecol. Eng. 2017, 103, 180–190. [Google Scholar] [CrossRef]
- Guarín-Romero, J.R.; Rodríguez-Estupiñán, P.; Giraldo, L.; Moreno-Piraján, J.C. Simple and competitive adsorption study of nickel (II) and chromium (III) on the surface of the brown algae Durvillaea antarctica biomass. ACS Omega 2019, 4, 18147–18158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Calderon, C.; Silva, H.C.; Vasquez, D.B. Metal removal by seaweed biomass. In Biomass Volume Estimation and Valorization for Energy; INTECH: London, UK, 2017; pp. 362–389. [Google Scholar] [CrossRef] [Green Version]
Model | Equation | Parameter |
---|---|---|
Kinetic model | ||
Pseudo-first- order (PFO) | qeq—sorption capacity at equilibrium (mg/g) qt—sorption capacity at time t (mg/g) t—time (min) k1—pseudo-first-order model rate constant (1/min) k2—pseudo-second-order model rate constant (g/mg·min) kID—intraparticle diffusion rate constant (mmol/(g·min1/2)) CWM—boundary layer thickness | |
Pseudo-second-order (PSO) | ||
Weber–Morris | ||
Isotherm model | ||
Langmuir model | qeq—sorption capacity at equilibrium (mg/g) Ceq—concentration of metal ions in the solution at equilibrium (mg/L) b—adsorption equilibrium constant (L/mg) qmax—maximum sorption capacity (mg/g) n—adsorption intensity Kf—Freundlich isotherm constant (mg(1−1/n) · L1/n · g−1) R—universal gas constant—8.314 J/(mol·K) T—temperature (K) bt—Temkin isotherm constant AT—Temkin isotherm equilibrium binding constant (L/g) | |
Freundlich model | ||
Temkin model |
Element | Sargassum sp. (mg/kg d.m.) | Sargassum sp. Extract (mg/L) | Sargassum sp. Post-Extraction Residue (mg/kg d.m.) | ZnO NPs (mg/kg d.m.) |
---|---|---|---|---|
Al | 2308 ± 57 | 6.93 ± 0.06 | 2487 ± 58 | 329 ± 2 |
B | 71.6 ± 1.7 | 2.44 ± 0.01 | 48.8 ± 0.1 | 72.5 ± 0.2 |
Ca | 18,763 ± 631 | 71.2 ± 0.6 | 21,816 ± 125 | 890 ± 21 |
Cd | 1.56 ± 0.03 | 0.007 ± 0.001 | 2.30 ± 0.03 | 0.990 ± 0.010 |
Cr | 3.71 ± 0.12 | 0.040 ± 0.002 | 6.19 ± 0.31 | 7.27 ± 0.26 |
Cu | 4.15 ± 0.11 | 0.019 ± 0.001 | 9.23 ± 0.40 | 3.55 ± 0.08 |
Fe | 2468 ± 187 | 4.56 ± 0.02 | 2555 ± 65 | 75.9 ± 1.0 |
K | 66,244 ± 1559 | 2955 ± 8 | 27,881 ± 171 | 3396 ± 31 |
Mg | 25,002 ± 453 | 861 ± 1 | 16,618 ± 144 | 11,557 ± 56 |
Mn | 174 ± 8 | 3.86 ± 0.01 | 165 ± 1 | 51.3 ± 0.4 |
Na | 9353 ± 132 | 422 ± 3 | 3800 ± 36 | 40,088 ± 179 |
P | 4100 ± 101 | 165 ± 1 | 2363 ± 22 | 2074 ± 12 |
S | 13,629 ± 142 | 407 ± 4 | 11,970 ± 185 | 29,650 ± 40 |
Zn | 27.2 ± 0.6 | 0.231 ± 0.020 | 22.9 ± 1.1 | 578,013 ± 6888 |
Model | Sargassum sp. | Sargassum sp. Post-Extraction Residue | ZnO NPs |
---|---|---|---|
Pseudo-first- order (PFO) | = 10.4 mg/g = 0.00964 1/min R2 = 0.624 | = 49.7 mg/g = 0.0193 1/min R2 = 0.889 | = 56.4 mg/g = 0.0164 1/min R2 = 0.860 |
Pseudo-second-order (PSO) | = 82.0 mg/g = 0.00315 g/mg·min R2 = 0.996 | = 81.3 mg/g = 0.000932 g/mg·min R2 = 0.985 | = 137 mg/g = 0.000862 g/mg·min R2 = 0.996 |
Weber–Morris | = 1.29 = 0.0226 mmol/(g·min1/2) R2 = 0.714 | = 0.367 = 0.0951 mmol/(g·min1/2) R2 = 0.790 | = 1.50 = 0.0847 mmol/(g·min1/2) R2 = 0.939 |
Parameter | Sargassum sp. | Sargassum sp. Post-Extraction Residue | ZnO NPs | ||||||
qeq2 (mg/g) | k2 (g/mg∙min) | R2 | qeq2 (mg/g) | k2 (g/mg∙min) | R2 | qeq2 (mg/g) | k2 (g/mg∙min) | R2 | |
pH | |||||||||
3 | 21.9 | 0.0289 | 0.985 | 32.4 | 0.00571 | 0.990 | 57.1 | 0.00340 | 0.997 |
4 | 31.9 | 0.00873 | 0.971 | 31.0 | 0.0564 | 0.950 | 88.5 | 0.00200 | 0.995 |
5 | 82.0 | 0.00315 | 0.996 | 81.3 | 0.000932 | 0.985 | 137 | 0.000862 | 0.996 |
C0 (mg/L) | |||||||||
100 | 40.7 | 0.00672 | 0.996 | 57.8 | 0.00811 | 0.998 | 82.0 | 0.00150 | 0.997 |
200 | 50.8 | 0.0111 | 0.998 | 91.7 | 0.000338 | 0.939 | 117 | 0.00102 | 0.998 |
300 | 82.0 | 0.00315 | 0.996 | 81.3 | 0.000932 | 0.985 | 137 | 0.000862 | 0.996 |
Sorbent | Metal Ion | Sorption Conditions | Sorption Capacity | Reference |
---|---|---|---|---|
Sargassum sp. as a biosorbent of metal ions | ||||
Sargassum filipendula | Pb(II) | pH 4, 30 °C, C0 47.7 mg/L, CS 2.0 g/L | 280 mg/g | [8] |
Sargassum vulgare | Fe(III) | pH 2, 25 °C, C0 100 mg/L, CS 5.0 g/L | 14.3 mg/g | [9] |
Sargassum thunbergii | Cr(VI) | pH 2, 45 °C, C0 104 mg/L, CS 1.0 g/L | 96.7 mg/g | [14] |
Sargassum sp. | Cr(III) | pH 5, RT, C0 300 mg/L, CS 1.0 g/L | 82.0 mg/g | This study |
ZnO NPs as a sorbent of metal ions | ||||
ZnO NPs (Zingiber zerumbet) * | Pb(II) | pH 5, 70 °C, C0 10 mg/L, CS 0.1 g/L | 2.10 mg/g | [6] |
ZnO NPs (Peganum harmala) * | Cr(VI) | pH 2, 50 °C, C0 50 mg/L, CS 2.0 g/L | 24.4 mg/g | [32] |
ZnO NPs (chemical method) | Cr(III) | pH 3–7, C0 20 mg/L, CS 1.0 g/L | 19.9 mg/g | [4] |
ZnO NPs (Cladophora glomerata) * | Cr(III) | pH 4, RT, C0 300 mg/L, CS 1.0 g/L | 227 mg/g | [19] |
ZnO NPs (Sargassum sp.) * | Cr(III) | pH 5, RT, C0 300 mg/L, CS 1.0 g/L | 137 mg/g | This study |
Model | Sargassum sp. | Sargassum sp. Post-Extraction Residue | ZnO NPs |
---|---|---|---|
Langmuir model | = 59.9 mg/g b = 0.0389 L/mg R2 = 0.924 | = 66.7 mg/g b = 0.123 L/mg R2 = 0.988 | = 120 mg/g b = 1.84 L/mg R2 = 0.776 |
Freundlich model | = 11.6 mg(1−1/n) · L1/n · g−1 n = 3.51 R2 = 0.580 | = 15.9 mg(1−1/n) · L1/n · g−1 n = 3.38 R2 = 0.919 | = 77.9 mg(1−1/n) · L1/n · g−1 n = 8.75 R2 = 0.835 |
Temkin model | = 1.90 L/mg = 293 B = 8.41 J/mol R2 = 0.555 | = 1.76 L/mg = 204 B = 12.1 J/mol R2 = 0.947 | = 532 L/mg = 204 B = 12.1 J/mol R2 = 0.775 |
Sorbent | Metal Ion | Sorption Conditions | qmax | Reference |
---|---|---|---|---|
Sargassum sp. as a biosorbent of metal ions | ||||
Sargassum sp. | Ni(II) | pH 5, 30 °C, C0 0–411 mg/L, CS 1.3 g/L | 53.6 mg/g | [10] |
Sargassum sp. | Cr(III) | pH 4, 30 °C, C0 10–300 mg/L, CS 1.0 g/L | 68.9 mg/g | [11] |
Sargassum sp. | Cr(III) | pH 3.5, 30 °C, C0 104–624 mg/L, CS 1.2 g/L | 68.2 mg/g | [12] |
Sargassum sp. | Cu(II) | pH 5, 30 °C, C0 0–445 mg/L, CS 1.3 g/L | 94.1 mg/g | [10] |
Sargassum wightii | Cr(III) | pH 5, RT, C0 50–200 mg/L, CS 25 g/L | 79.6 mg/g | [13] |
Sargassum sp. | Cr(III) | pH 5, RT, C0 25–300 mg/L, CS 1.0 g/L | 59.9 mg/g | This study |
ZnO NPs as a sorbent of metal ions | ||||
ZnO NPs (chemical method) | Cr(III) | pH 3–7, C0 10–100 mg/L, CS 1.0 g/L | 88.6 mg/g | [4] |
ZnO NPs (chemical method) | Zn(II) | pH 5.5, C0 100–600 mg/L, CS 0.0005 g/L | 357 mg/g | [2] |
ZnO NPs (chemical method) | Cd(II) | pH 5.5, C0 100–600 mg/L, CS 0.0005 g/L | 384 mg/g | [2] |
ZnO NPs (chemical method) | Hg(II) | pH 5.5, C0 100–600 mg/L, CS 0.0005 g/L | 714 mg/g | [3] |
ZnO NPs (Cladophora glomerata) * | Cr(III) | pH 4, RT, C0 25–300 mg/L, CS 1.0 g/L | 57.0 mg/g | [19] |
ZnO NPs (Sargassum sp.) * | Cr(III) | pH 5, RT, C0 25–300 mg/L, CS 1.0 g/L | 120 mg/g | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niedzbała, N.; Dziergowska, K.; Wełna, M.; Szymczycha-Madeja, A.; Chęcmanowski, J.; Bourgougnon, N.; Michalak, I. Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions. Processes 2023, 11, 393. https://doi.org/10.3390/pr11020393
Niedzbała N, Dziergowska K, Wełna M, Szymczycha-Madeja A, Chęcmanowski J, Bourgougnon N, Michalak I. Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions. Processes. 2023; 11(2):393. https://doi.org/10.3390/pr11020393
Chicago/Turabian StyleNiedzbała, Natalia, Katarzyna Dziergowska, Maja Wełna, Anna Szymczycha-Madeja, Jacek Chęcmanowski, Nathalie Bourgougnon, and Izabela Michalak. 2023. "Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions" Processes 11, no. 2: 393. https://doi.org/10.3390/pr11020393
APA StyleNiedzbała, N., Dziergowska, K., Wełna, M., Szymczycha-Madeja, A., Chęcmanowski, J., Bourgougnon, N., & Michalak, I. (2023). Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions. Processes, 11(2), 393. https://doi.org/10.3390/pr11020393