Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation
Abstract
:1. Introduction
2. Methodology
2.1. Procedure
2.2. Modeling of PET Preform
2.3. Three-Dimensional Modeling
2.4. Selection of Injection Molding Parameters at Three Levels
2.5. Simulations
2.6. Optimization
3. Results and Discussions
3.1. Signal-to-Noise Ratio (S/N)
3.2. Regression Analysis
+ 0.00083 (Injection Pressure) − 0.0136 (Pressure Holding Time)
+ 0.00711 (Cooling Time) − 0.004818 (Ambient Temperature)
3.3. Analysis of Variance (ANOVA)
3.4. Warpage Optimization
3.5. Simulation Contours
3.6. Validation of the Results
4. Conclusions
- Ambient temperature is the most significant parameter in terms of warpage. The percent contribution of the ambient temperature to the warpage is approximately 42.116%.
- The melting temperature is the second most significant parameter contributing to the warpage, almost 41.278%.
- The mold temperature and injection pressure contribute to the yielding of warpage at 5.16% and 1.32%, respectively.
- The results show that the cooling time has less impact on the warpage and contributes only 1.19%. The pressure holding time has negligible impact on the warpage, and it contributes only 0.59% to the yielding of the warpage.
- The warpage of PET preform can drop by almost 7.7202% if optimized process parameters are followed. The warpage, under such conditions, can be limited to 1.33803 mm. This means the proposed simulation technique and the Taguchi method can be used efficiently to reduce the warpage in the injection molding processes.
- Warpage optimization decreases the waste of PET material in the production facility and the rejection rate of the PET preform in the bottling industry at higher pressures. The rejection rate of PET can be lowered by 4% if the suggested parameters are used.
- Volumetric shrinkage is another decisive parameter that could help mitigate the rejection rate of the preforms in the packing industry. It could be investigated in future study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collard, F.; Gilbert, B.; Eppe, G.; Parmentier, E.; Das, K. Detection of anthropogenic particles in fish stomachs: An isolation method adapted to identification by Raman spectroscopy. Arch. Environ. Contam. Toxicol. 2015, 69, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Sulyman, M.; Haponiuk, J.; Formela, K. Utilization of recycled polyethylene terephthalate (PET) in engineering materials: A review. Int. J. Environ. Sci. Dev. 2016, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Stevens, E.; Goldstein, N. How green are green plastics? Biocycle 2002, 43, 42–45. [Google Scholar]
- Chen, C.P.; Chuang, M.T.; Hsiao, Y.H.; Yang, Y.K.; Tsai, C.H. Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Syst. Appl. 2009, 36, 10752–10759. [Google Scholar] [CrossRef]
- Hassan, H.; Regnier, N.; Lebot, C.; Pujos, C.; Defaye, G. Effect of cooling system on the polymer temperature and solidification during injection molding. Appl. Therm. Eng. 2009, 29, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Ma, Y. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robot. Comput. Integr. Manuf. 2019, 56, 66–74. [Google Scholar] [CrossRef]
- Yeh, D.-Y.; Cheng, C.-H.; Hsiao, S.-C. Classification knowledge discovery in mold tooling test using decision tree algorithm. J. Intell. Manuf. 2011, 22, 585–595. [Google Scholar] [CrossRef]
- Oliaei, E.; Heidari, B.S.; Davachi, S.M.; Bahrami, M.; Davoodi, S.; Hejazi, I.; Seyfi, J. Warpage and shrinkage optimization of injection-molded plastic spoon parts for biodegradable polymers using Taguchi, ANOVA and artificial neural network methods. J. Mater. Sci. Technol. 2016, 32, 710–720. [Google Scholar] [CrossRef]
- Heidari, B.S.; Oliaei, E.; Shayesteh, H.; Davachi, S.M.; Hejazi, I.; Seyfi, J.; Bahrami, M.; Rashedi, H. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design. J. Mech. Behav. Biomed. Mater. 2017, 65, 160–176. [Google Scholar] [CrossRef]
- Solanki, B.S.; Singh, H.; Sheorey, T. Modeling and analysis of cavity modification effect on quality of injection molded polymer gear. Int. J. Interact. Des. Manuf. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Ozcelik, B.; Erzurumlu, T. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J. Mater. Process. Technol. 2006, 171, 437–445. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X. An effective warpage optimization method in injection molding based on the Kriging model. Int. J. Adv. Manuf. Technol. 2008, 37, 953–960. [Google Scholar] [CrossRef]
- Stanek, M.; Manas, D.; Manas, M.; Suba, O. Optimization of injection molding process by MPX. In Proceedings of the 13th WSEAS International Conference on Automatic Control, Modelling & Simulation, Catania, Italy, 29–31 May 2011. [Google Scholar]
- Rahman, W.A.W.A.; Sin, L.T.; Rahmat, A.R. Injection moulding simulation analysis of natural fiber composite window frame. J. Mater. Process. Technol. 2008, 197, 22–30. [Google Scholar] [CrossRef]
- Sin, L.T.; Rahman, W.A.W.A.; Rahmat, A.R.; Tee, T.T.; Bee, S.T.; Chong-Yu, L. Computer aided injection moulding process analysis of polyvinyl alcohol–starch green biodegradable polymer compound. J. Manuf. Process. 2012, 14, 8–19. [Google Scholar] [CrossRef]
- Hakimian, E.; Sulong, A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Mater. Des. 2012, 42, 62–71. [Google Scholar] [CrossRef]
- Kamaruddin, S.; Khan, Z.A.; Foong, S. Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend. Int. J. Eng. Technol. 2010, 2, 574. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Dey, A. PET chemistry. In Recycling of Polyethylene Terephthalate Bottles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–22. [Google Scholar]
- Singh, A.; Banerjee, S.L.; Kumari, K.; Kundu, P.P. Recent Innovations in Chemical Recycling of Polyethylene Terephthalate Waste: A Circular Economy Approach Toward Sustainability. In Handbook of Solid Waste Management: Sustainability through Circular Economy; Springer: Cham, Switzerland, 2022; pp. 1149–1176. [Google Scholar]
- Ugoeze, K.C.; Amogu, E.O.; Oluigbo, K.E.; Nwachukwu, N. Environmental and public health impacts of plastic wastes due to healthcare and food products packages: A Review. J. Environ. Sci. Public Health 2021, 5, 1–31. [Google Scholar]
- Wang, L.; Wu, Z.; Cao, C. Technologies and fabrication of intelligent packaging for perishable products. Appl. Sci. 2019, 9, 4858. [Google Scholar] [CrossRef] [Green Version]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, I.; Yoshida, S.; Hiraga, K.; Miyamoto, K.; Kimura, Y.; Oda, K. Biodegradation of PET: Current status and application aspects. Acs Catal. 2019, 9, 4089–4105. [Google Scholar] [CrossRef]
- Matthews, M.J.; Shen, N.; Honig, J.; Bude, J.D.; Rubenchik, A.M. Phase modulation and morphological evolution associated with surface-bound particle ablation. JOSA B 2013, 30, 3233–3242. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Nonato, R.C.; Bonse, B.C. A study of PP/PET composites: Factorial design, mechanical and thermal properties. Polym. Test. 2016, 56, 167–173. [Google Scholar] [CrossRef]
- Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test. 2020, 90, 106707. [Google Scholar] [CrossRef]
- Ellis, B.; Smith, R. Polymers: A Property Database; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V.K. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. [Google Scholar] [CrossRef]
- Rao, Y.; Greener, J.; Avila-Orta, C.A.; Hsiao, B.S.; Blanton, T.N. The relationship between microstructure and toughness of biaxially oriented semicrystalline polyester films. Polymer 2008, 49, 2507–2514. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar]
S. No. | Property | Value |
---|---|---|
1 | Melting temperature | 270 °C |
2 | Maximum melting temperature | 290 °C |
3 | Minimum melting temperature | 265 °C |
4 | Specific heat | 2700 J/(Kg-K) |
5 | Thermal expansion coefficient | 3.45 × 1010 |
6 | Poisson’s ratio | 0.4 |
7 | Maximum shear rate | 50,000 1/s |
S. No | Parameter | Unit | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
1 | Melting temperature | °C | 280 | 285 | 290 |
2 | Mold temperature | °C | 275 | 280 | 285 |
3 | Injection pressure | MPa | 15.5 | 16.0 | 16.5 |
4 | Pressure holding time | Seconds | 1.55 | 1.60 | 1.65 |
5 | Cooling time | Seconds | 1.5 | 2.0 | 2.5 |
6 | Ambient temperature | °C | 25 | 30 | 35 |
Serial Number | Melting Temp (°C) | Mold Temp (°C) | Injection Pressure (MPa) | Pressure Holding Time (s) | Cooling Time (s) | Ambient Temp (°C) | Warpage (mm) |
---|---|---|---|---|---|---|---|
1 | 280 | 275 | 15.5 | 1.55 | 1.5 | 25 | 1.4003 |
2 | 280 | 275 | 15.5 | 1.55 | 2.0 | 30 | 1.3723 |
3 | 280 | 275 | 15.5 | 1.55 | 2.5 | 35 | 1.3452 |
4 | 280 | 280 | 16.0 | 1.60 | 1.5 | 25 | 1.3452 |
5 | 280 | 280 | 16.0 | 1.60 | 2.0 | 30 | 1.3811 |
6 | 280 | 280 | 16.0 | 1.60 | 2.5 | 35 | 1.3530 |
7 | 280 | 285 | 16.5 | 1.65 | 1.5 | 25 | 1.4143 |
8 | 280 | 285 | 16.5 | 1.65 | 2.0 | 30 | 1.3862 |
9 | 280 | 285 | 16.5 | 1.65 | 2.5 | 35 | 1.3592 |
10 | 285 | 275 | 16.0 | 1.65 | 1.5 | 30 | 1.3909 |
11 | 285 | 275 | 16.0 | 1.65 | 2.0 | 35 | 1.3638 |
12 | 285 | 275 | 16.0 | 1.65 | 2.5 | 25 | 1.4190 |
13 | 285 | 280 | 16.5 | 1.55 | 1.5 | 30 | 1.4004 |
14 | 285 | 280 | 16.5 | 1.55 | 2.0 | 35 | 1.3723 |
15 | 285 | 280 | 16.5 | 1.55 | 2.5 | 25 | 1.4275 |
16 | 285 | 285 | 15.5 | 1.60 | 1.5 | 30 | 1.4082 |
17 | 285 | 285 | 15.5 | 1.60 | 2.0 | 35 | 1.3811 |
18 | 285 | 285 | 15.5 | 1.60 | 2.5 | 25 | 1.4363 |
19 | 290 | 275 | 16.5 | 1.60 | 1.5 | 35 | 1.3879 |
20 | 290 | 275 | 16.5 | 1.60 | 2.0 | 25 | 1.4431 |
21 | 290 | 275 | 16.5 | 1.60 | 2.5 | 30 | 1.4159 |
22 | 290 | 280 | 15.5 | 1.65 | 1.5 | 35 | 1.3909 |
23 | 290 | 280 | 15.5 | 1.65 | 2.0 | 25 | 1.4461 |
24 | 290 | 280 | 15.5 | 1.65 | 2.5 | 30 | 1.4189 |
25 | 290 | 285 | 16.0 | 1.55 | 1.5 | 35 | 1.4004 |
26 | 290 | 285 | 16.0 | 1.55 | 2.0 | 25 | 1.4556 |
27 | 290 | 285 | 16.0 | 1.55 | 2.5 | 30 | 1.4275 |
Level | Melting Temperature | Mold Temperature | Injection Pressure | Pressure Holding Time | Cooling Time | Ambient Temperature |
---|---|---|---|---|---|---|
1 | −2.752 | −2.878 | −2.920 | −2.921 | −2.879 | −3.049 |
2 | −2.921 | −2.876 | −2.876 | −2.887 | −2.921 | −2.923 |
3 | −3.049 | −2.968 | −2.926 | −2.914 | −2.922 | −2.750 |
Delta | 0.297 | 0.092 | 0.050 | 0.034 | 0.042 | 0.298 |
Rank | 2 | 3 | 4 | 6 | 5 | 1 |
Term | Coeff | SE Coeff | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | −0.229 | 0.270 | −0.85 | 0.406 | |
melting temperature | 0.004772 | 0.000586 | 8.14 | 0.000 | 1.00 |
Mold temperature | 0.001449 | 0.000586 | 2.47 | 0.023 | 1.00 |
Injection pressure | 0.00083 | 0.00586 | 0.14 | 0.888 | 1.00 |
Pressure holding time | −0.0136 | 0.0586 | −0.23 | 0.819 | 1.00 |
Cooling time | 0.00711 | 0.00586 | 1.21 | 0.239 | 1.00 |
Ambient temperature | −0.004818 | 0.000586 | −8.22 | 0.000 | 1.00 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 6 | 0.021877 | 0.003646 | 23.60 | 0.000 |
Melting temperature | 1 | 0.010306 | 0.010248 | 66.33 | 0.000 |
Mold temperature | 1 | 0.001289 | 0.000945 | 6.11 | 0.023 |
Injection pressure | 1 | 0.000331 | 0.000003 | 0.05 | 0.888 |
Pressure holding time | 1 | 0.000149 | 0.000008 | 0.02 | 0.819 |
Cooling time | 1 | 0.000299 | 0.000228 | 1.47 | 0.239 |
Ambient temperature | 1 | 0.010515 | 0.010445 | 67.60 | 0.000 |
Error | 20 | 0.002077 | 0.000155 | ||
Total | 26 | 0.024967 |
Factor | Contribution | |
---|---|---|
Melting temperature | 0.010306 | 41.278% |
Mold temperature | 0.001289 | 5.1628% |
Injection pressure | 0.000331 | 1.3258% |
Pressure holding time | 0.000149 | 0.59678% |
Cooling time | 0.000299 | 1.1976% |
Ambient temperature | 0.010515 | 42.116% |
Solution | Melting Temperature | Mold Temperature | Injection Pressure | Pressure Holding Time | Cooling Time | Ambient Temperature |
1 | 280 | 275 | 15.5 | 1.65 | 1.5 | 35 |
Solution | Warpage (mm) Fit | Composite Desirability | ||||
1 | 1.33803 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Cui, Y.; Liu, Y.; Cui, J. Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation. Processes 2023, 11, 414. https://doi.org/10.3390/pr11020414
Chen J, Cui Y, Liu Y, Cui J. Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation. Processes. 2023; 11(2):414. https://doi.org/10.3390/pr11020414
Chicago/Turabian StyleChen, Jinping, Yanmei Cui, Yuanpeng Liu, and Jianfeng Cui. 2023. "Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation" Processes 11, no. 2: 414. https://doi.org/10.3390/pr11020414
APA StyleChen, J., Cui, Y., Liu, Y., & Cui, J. (2023). Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation. Processes, 11(2), 414. https://doi.org/10.3390/pr11020414