Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Treatment of Anion-Exchange Resins
2.3. Instrumentation and Analytical Conditions
2.4. Determination of Tertiary Amine Group Content on Resin Surfaces
2.5. Catalyst Characterization
3. Results and Discussion
3.1. Comparison of Catalytic Performance of Different Catalysts
3.2. Resin Characterization
3.2.1. Characterization of Pore and Surface Structure by Nitrogen Physisorption
3.2.2. TG Analysis
3.2.3. SEM and TEM Analysis
3.2.4. XRD Analysis
3.3. Reaction Characterization
3.3.1. Effect of Temperature on CH3SiHCl2 Conversion
3.3.2. Effect of Reactant Ratio on CH3SiHCl2 Conversion
3.3.3. Effect of Reaction Liquid Hourly Space Velocity (LHSV) on CH3SiHCl2 Conversion
3.3.4. Catalytic Stability
3.4. Possible Pathways for Resin Catalysts to Drive the Conversion of CH3SiHCl2 to CH3SiCl3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haegel, N.M.; Atwater, H.; Barnes, T.; Breyer, C.; Burrell, A.; Chiang, Y.-M.; De Wolf, S.; Dimmler, B.; Feldman, D.; Glunz, S.; et al. Terawatt-Scale Photovoltaics: Transform Global Energy. Science 2019, 364, 836–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.F.B.; Moreira, S.P.; Zampieri, P.R.; Bacchin, J.M.G.; Mei, P.R. New Processes for the Production of Solar-Grade Polycrystalline Silicon: A Review. Sol. Energy Mater. Sol. Cells 2008, 92, 418–424. [Google Scholar] [CrossRef]
- Irikura, K.; Muroi, M.; Yamada, A.; Matsuo, M.; Habuka, H.; Ishida, Y.; Ikeda, S.I.; Hara, S. Advantages of a Slim Vertical Gas Channel at High SiHCl3 Concentrations for Atmospheric Pressure Silicon Epitaxial Growth. Mater. Sci. Semicond. Process. 2018, 87, 13–18. [Google Scholar] [CrossRef]
- Wang, S.H.; Chang, H.E.; Lee, C.C.; Fuh, Y.K.; Li, T.T. Evolution of A-Si:H to Nc-Si:H Transition of Hydrogenated Silicon Films Deposited by Trichlorosilane Using Principle Component Analysis of Optical Emission Spectroscopy. Mater. Chem. Phys. 2020, 240, 122186. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, J.; Yin, Y. Theoretical Study on the SiH 4 À n Cl n ( n = 0–4 ) Reaction Mechanisms for Polysilicon Production Process. Comput. Theor. Chem. 2014, 1035, 60–67. [Google Scholar] [CrossRef]
- Hou, Y.Q.; Xie, G.; Nie, Z.F.; Li, N. Direct Current Heating Model for the Siemens Reactor. Adv. Mater. Res. 2014, 881–883, 1805–1808. [Google Scholar] [CrossRef]
- Vorotyntsev, A.V.; Mochalov, G.M.; Vorotyntsev, V.M. Kinetics of Catalytic Hydrogen Reduction of SiCl4 in the Presence of Nickel Chloride. Inorg. Mater. 2013, 49, 1–5. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, Y.; Wang, C.; Guo, Q.; Hou, Y.; Ramachandran, P.A.; Xie, G. Mathematical Model and Energy Efficiency Analysis of Siemens Reactor with a Quartz Ceramic Lining. Appl. Therm. Eng. 2021, 199, 117522. [Google Scholar] [CrossRef]
- Seigneur, H.; Mohajeri, N.; Brooker, R.P.; Davis, K.O.; Schneller, E.J.; Dhere, N.G.; Rodgers, M.P.; Wohlgemuth, J.; Shiradkar, N.S.; Scardera, G.; et al. Manufacturing Metrology for C-Si Photovoltaic Module Reliability and Durability, Part I: Feedstock, Crystallization and Wafering. Renew. Sustain. Energy Rev. 2016, 59, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lee, W.H.; Park, Y.K.; Kim, H.Y.; Kang, N.Y.; Yoon, K.B.; Choi, W.C.; Yang, O.B. Catalytic Conversion of Silicon Tetrachloride to Trichlorosilane for a Poly-Si Process. Sol. Energy Mater. Sol. Cells 2012, 105, 142–147. [Google Scholar] [CrossRef]
- Desenfant, A.; Laduye, G.; Vignoles, G.L.; Chollon, G. Kinetic and Gas-Phase Study of the Chemical Vapor Deposition of Silicon Carbide from C2H3SiCl3/H2. J. Ind. Eng. Chem. 2021, 94, 145–158. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, P.; Ding, Z.; Li, Y.; Li, H.; Hua, C.; Wu, Z. Design Optimization and Control of Dividing Wall Column for Purification of Trichlorosilane. Chem. Eng. Sci. 2022, 257, 117716. [Google Scholar] [CrossRef]
- Díez, E.; Rodríguez, A.; Gómez, J.M.; Olmos, M. Distillation Assisted Heat Pump in a Trichlorosilane Purification Process. Chem. Eng. Process. Process Intensif. 2013, 69, 70–76. [Google Scholar] [CrossRef]
- Long, N.V.D.; Kwon, Y.; Lee, M. Design and Optimization of Thermally Coupled Distillation Schemes for the Trichlorosilane Purification Process. Appl. Therm. Eng. 2013, 59, 200–210. [Google Scholar] [CrossRef]
- Boukherroub, R.; Chatgilialoglu, C.; Manuel, G. PdCl2-Catalyzed Reduction of Organic Halides by Triethylsilane. Organometallics 1996, 15, 1508–1510. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Materials, S. Synthesis of Chlorosilanes from (Fluoroalkyl)silanes, Bis(silyl)benzenes, and.alpha.,.omega.-Dihydropolysiloxanes. Organometallics 1994, 13, 808–812. [Google Scholar]
- Wan, Y.; Liu, J.; Mao, Q.; Chang, X.; Song, Y.; Yuan, Z.; You, Z.; Zhao, X.; Tian, J.Z.; Yan, D.; et al. Exploration of Photocatalytic Chlorination Combined Simplified Distillation to Produce Electronic Grade High-Purity Trichlorosilane via Microchannel Reactor Experiments, Multiphase-Flow Simulation, ReaxFF MD, and DFT. Chem. Eng. J. 2022, 450, 138020. [Google Scholar] [CrossRef]
- Liu, T.; Wang, T.; Huang, Y.; Wang, C.; Wang, J. Detailed Kinetics of Methylphenyldichlorosilane Synthesis from Methyldichlorosilane and Chlorobenzene by Gas Phase Condensation. Chin. J. Chem. Eng. 2015, 23, 954–961. [Google Scholar] [CrossRef]
- Ivanov, V.M.; Trubitsin, Y.V. Approaches to Hydrogenation of Silicon Tetrachloride in Polysilicon Manufacture. Russ. Microelectron. 2011, 40, 559–561. [Google Scholar] [CrossRef]
- Cho, Y.S.; Han, J.S.; Yoo, B.R.; Kang, S.O.; Jung, I.N. Palladium-Catalyzed Selective Dechlorination of Polychloromethylsilanes with Trichlorosilane. Organometallics 1998, 17, 570–573. [Google Scholar] [CrossRef]
- Ferreira, R.S.B.; Bejarano-Alva, I.J.; Shimamoto, G.G.; Tubino, M.; Meirelles, A.J.A.; Batista, E.A.C. Optimizing the Production of Biodiesel from Palm Olein (Elaeis Guineensis Jacq.) Using a Strong Basic Anionic Resin as a Heterogeneous Catalyst. Ind. Crops Prod. 2021, 174, 114121. [Google Scholar] [CrossRef]
- Medina-Herrera, N.; Tututi-Avila, S.; Jiménez-Gutiérrez, A.; Segovia-Hernández, J.G. Optimal Design of a Multi-Product Reactive Distillation System for Silanes Production. Comput. Chem. Eng. 2017, 105, 132–141. [Google Scholar] [CrossRef]
- Yasukouchi, H.; Machida, K.; Nishiyama, A.; Mitsuda, M. Efficient and Practical Deacylation Reaction System in a Continuous Packed-Bed Reactor. Org. Process Res. Dev. 2019, 23, 654–659. [Google Scholar] [CrossRef]
- Laroche, B.; Saito, Y.; Ishitani, H.; Kobayashi, S. Basic Anion-Exchange Resin-Catalyzed Aldol Condensation of Aromatic Ketones with Aldehydes in Continuous Flow. Org. Process Res. Dev. 2019, 23, 961–967. [Google Scholar] [CrossRef]
- Sasayama, T.; Hiromori, K.; Takahashi, A.; Shibasaki-Kitakawa, N. Process for Continuous Production of Sugar Esters of Medium-Chain Fatty Acid: Effect of Residence Time on Productivity and Scale-up Design. J. Food Eng. 2021, 305, 110608. [Google Scholar] [CrossRef]
- Wu, H.S.; Lee, C.S. Catalytic Activity of Quaternary Ammonium Poly(Methylstyrene-Co-Styrene) Resin in an Organic Solvent/Alkaline Solution. J. Catal. 2001, 199, 217–223. [Google Scholar] [CrossRef]
- Li, Y.; Yu, F.; He, W.; Yang, W. The Preparation and Catalytic Performance of Graphene-Reinforced Ion-Exchange Resins. RSC Adv. 2015, 5, 2550–2561. [Google Scholar] [CrossRef]
- Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd-Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2013, 3, 1114–1119. [Google Scholar] [CrossRef]
- Sasayama, T.; Kamikanda, Y.; Shibasaki-Kitakawa, N. Process Design for Green and Selective Production of Bio-Based Surfactant with Heterogeneous Resin Catalyst. Chem. Eng. J. 2018, 334, 2231–2237. [Google Scholar] [CrossRef]
- Maia Filho, D.C.; Salim, V.M.M.; Borges, C.P. Membrane Contactor Reactor for Transesterification of Triglycerides Heterogeneously Catalyzed. Chem. Eng. Process. Process Intensif. 2016, 108, 220–225. [Google Scholar] [CrossRef]
- Liu, T.-T.; Ma, C.-H.; Sui, X.-Y.; Yang, L.; Zu, Y.-G.; Zhao, C.-J.; Li, C.-Y.; Zhang, L. Preparation of Shikonin by Hydrolyzing Ester Derivatives Using Basic Anion Ion Exchange Resin as Solid Catalyst. Ind. Crops Prod. 2012, 36, 47–53. [Google Scholar] [CrossRef]
- Tianshu, B.; Lixuan, Z.; Chunhong, W. The Synthesis of Thermostable, Strongly Basic Anion-Exchange Resins Using Cross-Linked Biguanide and Its Application in the Extraction of Sodium Copper Chlorophyllin. J. Chromatogr. B 2022, 1211, 123436. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.D.; Nalawade, S.P. Selectivity Engineering of 4-Phenoxyacetophenone by Acylation of Diphenyl Ether with Ion Exchange Resins: Modeling of Catalyst Deactivation and Remedies. Chem. Eng. Sci. 2003, 58, 2573–2585. [Google Scholar] [CrossRef]
- Ravasio, S.; Masi, M.; Cavallotti, C. Analysis of the Gas Phase Reactivity of Chlorosilanes. J. Phys. Chem. A 2013, 117, 5221–5231. [Google Scholar] [CrossRef] [PubMed]
- Li, K.Y.; Huang, C.D. Redistribution Reaction of Trichlorosilane in a Fixed-Bed Reactor. Ind. Eng. Chem. Res. 1988, 27, 1600–1606. [Google Scholar] [CrossRef]
- Vorotyntsev, A.V.; Petukhov, A.N.; Makarov, D.A.; Razov, E.N.; Vorotyntsev, I.V.; Nyuchev, A.V.; Kirillova, N.I.; Vorotyntsev, V.M. Synthesis, Properties and Mechanism of the Ion Exchange Resins Based on 2-Methyl-5-Vinylpyridine and Divinylbenzene in the Catalytic Disproportionation of Trichlorosilane. Appl. Catal. B Environ. 2018, 224, 621–633. [Google Scholar] [CrossRef]
Resins | Character | Functional Groups | Particle Diameter (mm) | Moisture Content (%) | Exchange Capacity (meq g−1) |
---|---|---|---|---|---|
D301 | M 1 | –N(CH3)2 | 0.32–1.25 | 48~58 | 4.9 |
D301F | M 1 | –N(CH3)2 | 0.45–1.25 | 50~60 | 4.8 |
D303 | M 1 | –N(CH3)2 | 0.32–1.25 | 50~60 | 5.4 |
D315 | M 1 | –N(CH2CH2NH)2 | 0.45–1.25 | 55~65 | 6.2 |
D380 | M 1 | –NHCH3 | 0.32–1.25 | 52~60 | 4.3 |
D201 | M 1 | –N+(CH3)3 | 0.32–1.25 | 50~60 | 3.7 |
201 × 7 | G 2 | –N+(CH3)3 | 0.32–1.25 | 42~48 | 3.6 |
Resins | Low Boilers | CH3SiH2Cl (mol%) | CH3SiHCl2 (mol%) | SiHCl3 (mol%) | SiCl4 (mol%) | CH3SiCl3 (mol%) | Conversion (%) |
---|---|---|---|---|---|---|---|
D301 | 0.0 | 0.8 | 33.9 | 16.4 | 34.3 | 16.9 | 35.1 |
D301F | 0.3 | 1.0 | 33.3 | 16.2 | 33.8 | 16.7 | 33.4 |
D303 | 0.0 | 0.6 | 37.3 | 12.7 | 37.8 | 12.7 | 25.4 |
D315 | 0.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | 0.0 |
D380 | 0.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | 0.0 |
D201 | 0.1 | 0.1 | 47.2 | 2.6 | 47.3 | 2.8 | 5.6 |
201X7 | 0.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Resins | Surface AreaBET (m2 g−1) | Pore Volume (cc g−1) | Average Pore Diameter (nm) |
---|---|---|---|
D301 | 45.31 | 0.3952 | 56.26 |
D301F | 38.62 | 0.3563 | 63.43 |
D303 | 29.85 | 0.1542 | 40.37 |
D201 | 16.79 | 0.1467 | 52.1 |
T/°C | 120 | 130 | 140 | 150 | 160 |
---|---|---|---|---|---|
D301 | 4.499% | 4.893% | 4.473% | 4.160% | 3.26% |
D301F | 4.450% | 4.655% | 4.363% | 3.945% | 3.272% |
D303 | 4.285% | 4.503% | 4.348% | 4.043% | 3.023% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, M.; Huang, G. Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst. Processes 2023, 11, 429. https://doi.org/10.3390/pr11020429
Liu J, Zhang M, Huang G. Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst. Processes. 2023; 11(2):429. https://doi.org/10.3390/pr11020429
Chicago/Turabian StyleLiu, Jianhua, Miaolei Zhang, and Guoqiang Huang. 2023. "Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst" Processes 11, no. 2: 429. https://doi.org/10.3390/pr11020429
APA StyleLiu, J., Zhang, M., & Huang, G. (2023). Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst. Processes, 11(2), 429. https://doi.org/10.3390/pr11020429