Variable Fluid Characteristics’ Impacts on the Dissipative and Chemically Reactive Fluid Flow across a Stretched Surface
Abstract
:1. Introduction
2. Problem Formulations
3. Numerical Methodology
4. Shooting Technique Verification
5. Discussion of the Results
6. Conclusions
- The local Nusselt number, as well as the coefficient of the local skin-friction are both enhanced by the flow behavior index, whereas the opposite outcome is caused by the slip velocity parameter.
- The thermal conductivity parameter’s presence results in changes to the temperature profile and thermal thickness, in addition to a decrease in the sheet’s rate of heat transmission.
- The research predicted significant changes in the characteristics of heat transfer and fluid flow, in particular for Weissenberg numbers above or around 0.1.
- Due to the existence of the mixed convection phenomenon, the skin-friction coefficient improved, although the local Sherwood and Nusselt numbers showed the opposite trend.
- Increases in the flow behavior index and chemical reaction parameter improved the rate of mass transfer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
a | velocity coefficient |
specific heat | |
C | fluid concentration |
coefficient of skin-friction | |
surface fluid concentration | |
ambient fluid concentration | |
D | diffusion coefficient |
ambient diffusivity | |
Eckert number | |
f | dimensionless stream function |
g | gravitational acceleration |
K | chemical reaction rate |
m | coefficient of the Cross fluid |
local Nusselt number | |
Prandtl number | |
local Reynolds number | |
Schmidt number | |
local Sherwood number | |
T | fluid temperature |
ambient temperature | |
u | velocity component in the x-direction |
v | velocity component in the y-direction |
Weissenberg number | |
Cartesian coordinates | |
Greek symbols | |
coefficient of viscosity | |
ambient fluid viscosity | |
dimensionless temperature | |
dimensionless concentration | |
thermal conductivity of the Cross fluid | |
ambient Cross fluid thermal conductivity | |
nanofluid density | |
ambient fluid density | |
thermal expansion coefficient | |
Cross time constant | |
viscosity parameter | |
kinematic viscosity | |
thermal conductivity parameter | |
variable diffusion parameter | |
mixed convection parameter | |
slip velocity parameter | |
chemical reaction parameter | |
similarity variable | |
Superscripts | |
′ | differentiation with respect to |
∞ | free stream condition |
w | wall condition |
References
- Acrivos, A.; Shah, M.J.; Peterson, E.E. Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces. AlChE J. 1960, 6, 312–317. [Google Scholar] [CrossRef]
- Matsuhisa, S.; Bird, R.B. Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. AlChE J. 1965, 11, 588–595. [Google Scholar] [CrossRef]
- Shenoy, A.V. Combined laminar forced and free convection heat transfer to viscoelastic fluids. AlChE J. 1980, 26, 683–686. [Google Scholar] [CrossRef]
- Shenoy, A.V.; Mashelkar, R.A. Thermal convection in non-Newtonian fluids. Adv. Heat Transf. 1982, 15, 143–225. [Google Scholar]
- Vajravelu, K.; Prasad, K.V.; Rao, N.S.P. Diffusion of a chemically reactive species of a power-law fluid past a stretching surface. Comput. Math. Appl. 2011, 62, 93–108. [Google Scholar] [CrossRef]
- Mahmoud, M.A.A. Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation. Math. Comput. Model. 2011, 54, 1228–1237. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zheng, L.C.; Ma, L.X. Heat transfer characteristics of thin power-law liquid films over horizontal stretching sheet with internal heating and variable thermal coefficient. Appl. Math. Mech. 2016, 37, 1587–1596. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Bai, Y. Unsteady flow and heat transfer of power-law nanofluid thin film over a stretching sheet with variable magnetic field and power-law velocity slip effect. J. Taiwan Inst. Chem. Eng. 2017, 70, 104–110. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Domnich, A.A. Model of a nonuniformly heated viscous flow through a bounded domain. Differ. Equ. 2020, 56, 304–314. [Google Scholar] [CrossRef]
- Domnich, A.A.; Baranovskii, E.S.; Artemov, M.A. A nonlinear model of the non-isothermal slip flow between two parallel plates. J. Phys. Conf. Ser. 2020, 1479, 012005. [Google Scholar] [CrossRef]
- Gee, R.E.; Lyon, J.B. Nonisothermal flow of viscous non-Newtonian fluids. Ind. Eng. Chem. 1957, 49, 956–960. [Google Scholar] [CrossRef]
- Biery, J.C. Numerical and experimental study of damped oscillating manometers: I. Newtonian fluids. AlChE J. 1963, 9, 606–614. [Google Scholar] [CrossRef]
- Cross, M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier Science: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Xie, J.; Jin, Y.C. Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method. Eng. Appl. Comput. Fluid Mech. 2016, 10, 111–129. [Google Scholar] [CrossRef]
- Khan, M.; Manzoor, M.; Rahman, M. Boundary-layer flow and heat transfer of Cross fluid over a stretching sheet. Therm. Sci. 2019, 23, 307–318. [Google Scholar] [CrossRef]
- Khan, M.; Manzoor, M.; Rahman, M. On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet. Results Phys. 2017, 7, 3767–3772. [Google Scholar] [CrossRef]
- Khan, M.I.; Waqas, M.; Hayat, T.; Alsaedi, A. Magnetohydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Phys. Chem. Liq. 2017, 7, 1824–1827. [Google Scholar]
- Manzur, M.; Khan, M.; Rahman, M. Mixed convection heat transfer to Cross-fluid with thermal radiation: Effects of buoyancy assisting and opposing flows. Int. J. Mech. Sci. 2018, 138, 515–523. [Google Scholar] [CrossRef]
- Mustafa, M.; Aiman, S.; Rahi, M. Pressure-driven flow of Cross fluid along a stationary plate subject to binary chemical reaction and Arrhenius activation energy. Arab. J. Sci. Eng. 2019, 44, 5647–5655. [Google Scholar] [CrossRef]
- Gowda, R.J.P.; Kumar, R.N.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Gowda, R.J.P.; Sarris, I.E.; Kumar, R.N.; Kumar, R.; Prasannakumara, B.C. A three-dimensional non-Newtonian magnetic fluid flow induced due to stretching of the flat surface with chemical reaction. J. Heat Transfer. 2022, 144, 113602. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Ahammad, N.A.; Din, E.M.T.E.; Gamaoun, F.; Awan, A.U.; Ali, B. Bio-convection effects on Prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials 2022, 12, 2174. [Google Scholar] [CrossRef] [PubMed]
- Shamshuddin, M.D.; Mebarek-Oudina, F.; Salawu, S.O.; Shafiq, A. Thermophoretic movement transport of reactive Casson nanofluid on riga plate surface with nonlinear thermal radiation and uneven heat sink/source. J. Nanofluids 2022, 11, 833–844. [Google Scholar] [CrossRef]
- Megahed, A.M.; Abbas, W. Non-Newtonian Cross fluid flow through a porous medium with regard to the effect of chemical reaction and thermal stratification phenomenon. Case Stud. Therm. Eng. 2022, 29, 101715. [Google Scholar] [CrossRef]
- Mahmoud, M.A.A.; Megahed, A.M. MHD flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties. Can. J. Phys. 2009, 87, 1065–1071. [Google Scholar] [CrossRef]
- Mohyud Din, S.T.; Zubair, T.; Usman, M.; Hamid, M.; Rafiq, M.; Mohsin, S. Investigation of heat and mass transfer under the influence of variable diffusion coefficient and thermal conductivity. Indian J. Phys. 2018, 92, 1109–1117. [Google Scholar] [CrossRef]
- Megahed, A.M. Flow and heat transfer of powell-eyring fluid due to an exponential stretching sheet with heat flux and variable thermal conductivity. Z. Naturforsch. 2015, 70, 163–169. [Google Scholar] [CrossRef]
- Andersson, H.I. Slip flow past a stretching surface. Acta Mech. 2002, 158, 121–125. [Google Scholar] [CrossRef]
- Adem, G.A.; Kishan, N. Slip effects in a flow and heat transfer of a nanofluid over a nonlinearly stretching sheet using optimal homotopy asymptotic method. Int. J. Eng. Manuf. Sci. 2018, 8, 25–46. [Google Scholar]
- Rasool, G.; Shafiq, A.; Chu, Y.M.; Bhutta, M.S.; Ali, A. Optimal homotopic exploration of features of Cattaneo-Christov model in second grade nanofluid flow via darcy-forchheimer medium subject to viscous dissipation and thermal radiation. Comb. Chem. High Throughput Screen. 2022, 25, 2485–2497. [Google Scholar]
Andersson [29] | Current Problem | |
---|---|---|
0.0 | 1.0000 | 1.00000000 |
1.0 | 0.4302 | 0.43019985 |
2.0 | 0.2840 | 0.28389910 |
5.0 | 0.1448 | 0.14480018 |
10.0 | 0.0812 | 0.08118790 |
20.0 | 0.0438 | 0.04377915 |
50.0 | 0.0186 | 0.01856902 |
m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.498569 | 1.437981 | 0.570272 |
0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.540020 | 1.444305 | 0.581173 |
0.8 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.631511 | 1.460121 | 0.600875 |
0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.527281 | 1.443250 | 0.561079 |
0.1 | 1.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.500804 | 1.435692 | 0.552594 |
0.1 | 6.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.479069 | 1.429590 | 0.542189 |
0.1 | 0.2 | 0.0 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.683342 | 1.451281 | 0.582923 |
0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.619305 | 1.422890 | 0.570811 |
0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.527943 | 1.368512 | 0.550014 |
0.1 | 0.2 | 0.2 | 0.0 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.572235 | 1.391871 | 0.558777 |
0.1 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.648465 | 1.307790 | 0.529181 |
0.1 | 0.2 | 0.2 | 0.5 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.777534 | 1.161302 | 0.485672 |
0.1 | 0.2 | 0.2 | 0.2 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | 0.605985 | 1.415372 | 0.569250 |
0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.2 | 0.551237 | 1.383591 | 0.554754 |
0.1 | 0.2 | 0.2 | 0.2 | 0.5 | 0.2 | 0.1 | 0.1 | 0.2 | 0.514755 | 1.360160 | 0.544407 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.2 | 0.570708 | 1.586060 | 0.559983 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 | 0.568985 | 1.318781 | 0.559621 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.5 | 0.1 | 0.1 | 0.2 | 0.568029 | 1.194131 | 0.559129 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.0 | 0.1 | 0.2 | 0.570088 | 1.482571 | 0.600766 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | 0.2 | 0.570088 | 1.482571 | 0.495578 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.5 | 0.1 | 0.2 | 0.570088 | 1.482571 | 0.447236 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.2 | 0.570088 | 1.482581 | 0.509114 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.570088 | 1.482570 | 0.647678 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.5 | 0.2 | 0.570088 | 1.482301 | 0.722914 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.570711 | 1.581360 | 0.559977 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.569778 | 1.433263 | 0.559787 |
0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.8 | 0.568231 | 1.187231 | 0.559569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrehili, M.; Alrihieli, H. Variable Fluid Characteristics’ Impacts on the Dissipative and Chemically Reactive Fluid Flow across a Stretched Surface. Processes 2023, 11, 483. https://doi.org/10.3390/pr11020483
Alrehili M, Alrihieli H. Variable Fluid Characteristics’ Impacts on the Dissipative and Chemically Reactive Fluid Flow across a Stretched Surface. Processes. 2023; 11(2):483. https://doi.org/10.3390/pr11020483
Chicago/Turabian StyleAlrehili, Mohammed, and Haifaa Alrihieli. 2023. "Variable Fluid Characteristics’ Impacts on the Dissipative and Chemically Reactive Fluid Flow across a Stretched Surface" Processes 11, no. 2: 483. https://doi.org/10.3390/pr11020483
APA StyleAlrehili, M., & Alrihieli, H. (2023). Variable Fluid Characteristics’ Impacts on the Dissipative and Chemically Reactive Fluid Flow across a Stretched Surface. Processes, 11(2), 483. https://doi.org/10.3390/pr11020483