Classification for GM and Non-GM Maize Kernels Based on NIR Spectra and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Data Acquisition
2.2. Feature Extraction and Selection
2.3. Classification Model Establishment and Evaluation
2.4. Spectral 2D Transformation and Deep Learning
3. Results and Discussion
3.1. Overview of Spectra
3.2. Classification Based on Feature Engineering
3.3. Classification Based on Deep Learning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.H.; Li, S.Y.; Lin, H.; Pan, L.Y.; Yang, G.W.; Lai, Y.H.; Sun, D.Q. Bioinformatics Analysis of Microarray Data to Reveal Novel Genes Related to Cold-Resistance of Maize. Russ. J. Plant Physiol. 2018, 65, 278–285. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, D.H.; Shi, Y.C. High-Solids Bio-Conversion of Maize Starch to Sugars and Ethanol. Starch Starke 2019, 71, 1800142. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Morlacchini, M.; Marocco, A.; Lo Pinto, M. High-protein maize in diets for growing pigs. Anim. Feed. Sci. Technol. 2011, 165, 105–110. [Google Scholar] [CrossRef]
- Fedoroff, N.V. The past, present and future of crop genetic modification. New Biotechnol. 2010, 27, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W. An Exploration of the Risks and Control of Genetic Modification Technology. Nankai J. 2014, 5, 76–84. [Google Scholar]
- Bullock, D.W.; Wilson, W.W.; Neadeau, J. Gene Editing Versus Genetic Modification in the Research and Development of New Crop Traits: An Economic Comparison. Am. J. Agric. Econ. 2021, 103, 1700–1719. [Google Scholar] [CrossRef]
- Kamle, S.; Ali, S. Genetically modified crops: Detection strategies and biosafety issues. Gene 2013, 522, 123–132. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, X.A.; Sun, D.W. Recent Developments and Applications of Hyperspectral Imaging for Quality Evaluation of Agricultural Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1744–1757. [Google Scholar] [CrossRef]
- Chen, Z.P.; Xiong, S.; Zuo, Q.; Shi, C.X. Quantitative analysis based on spectral shape deformation: A review of the theory and its applications. J. Chemom. 2018, 32, e2913. [Google Scholar] [CrossRef]
- Berhow, M.A.; Singh, M.; Bowman, M.J.; Price, N.P.J.; Vaughn, S.F.; Liu, S.X. Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chem. 2020, 317, 126373. [Google Scholar] [CrossRef]
- Mage, I.; Wold, J.P.; Bjerke, F.; Segtnan, V. On-line sorting of meat trimmings into targeted fat categories. J. Food Eng. 2013, 115, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Rosic, J.S.; Muncan, J.; Mileusnic, I.; Kosic, B.; Matija, L. Detection of protein deposits using NIR spectroscopy. Soft Mater. 2016, 14, 264–271. [Google Scholar] [CrossRef]
- Yehorov, V.; Smolarz, A.; Julayeva, Z.; Kalabayeva, A. NIR spectroscopy for automated grain analyzers. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, Wilga, Poland, 14 October 2020. [Google Scholar]
- Wang, W.; Heitschmidt, G.W.; Windham, W.R.; Feldner, P.; Ni, X.; Chu, X. Feasibility of Detecting Aflatoxin B-1 on Inoculated Maize Kernels Surface using Vis/NIR Hyperspectral Imaging. J. Food Sci. 2015, 80, 116–122. [Google Scholar] [CrossRef]
- He, Y.; Feng, X.P.; Zhang, C.; Cheng, P.; Zhao, Y.Y. Discrimination of Transgenic Maize Kernel Using NIR Hyperspectral Imaging and Multivariate Data Analysis. Sensors 2017, 17, 1894. [Google Scholar]
- Benes, E.; Fodor, M.; Kovács, S.; Gere, A. Application of Detrended Fluctuation Analysis and Yield Stability Index to Evaluate Near Infrared Spectra of Green and Roasted Coffee Samples. Processes 2020, 8, 913. [Google Scholar] [CrossRef]
- Wei, Y.Z.; Li, X.L.; He, Y. Generalisation of tea moisture content models based on VNIR spectra subjected to fractional differential treatment. Biosyst. Eng. 2021, 205, 174–186. [Google Scholar] [CrossRef]
- Folloni, S.; Bellocchi, G.; Prospero, A.; Querci, M.; Moens, W.; Ermolli, M.; Van den Eede, G. Statistical evaluation of real-time PCR protocols applied to quantify genetically modified maize. Food Anal. Method. 2010, 3, 304–312. [Google Scholar] [CrossRef]
- Vasantha, M.; Bharathi, D.S.; Dhamodharan, R. Medical Image Feature, Extraction, Selection and Classification. Int. J. Eng. Sci. Technol. 2010, 2, 2071–2076. [Google Scholar]
- Casale, M.; Sinelli, N.; Oliveri, P.; Di Egidio, V.; Lanteri, S. Chemometrical strategies for feature selection and data compression applied to NIR and MIR spectra of extra virgin olive oils for cultivar identification. Talanta 2010, 80, 1832–1837. [Google Scholar] [CrossRef]
- Yang, P.; Yang, G.W.; Zhang, F.L.; Jiang, B.; Wang, M.X. Spectral Classification and Particular Spectra Identification Based on Data Mining. Arch. Comput. Method. Eng. 2021, 28, 917–935. [Google Scholar] [CrossRef]
- Holder, L.; Russell, I.; Markov, Z.; Pipe, A.G. Current and Future Trends in Feature Selection and Extraction for Classification Problems. Int. J. Pattern Recognit. Artif. Intell. 2005, 19, 133–142. [Google Scholar]
- Vharkate, M.N.; Musande, V.B. Fusion Based Feature Extraction and Optimal Feature Selection in Remote Sensing Image Retrieval. Multimed. Tools Appl. 2022, 81, 31787–31814. [Google Scholar] [CrossRef]
- Aversa, R.; Coronica, P.; Nobili, C.D.; Cozzini, S. Deep Learning, Feature Learning, and Clustering Analysis for SEM Image Classification. Data Intell. 2020, 2, 513–528. [Google Scholar] [CrossRef]
- Wu, Y.P.; Guo, D.; Liu, H.P.; Huang, Y. An end-to-end learning method for industrial defect detection. Assem. Autom. 2020, 40, 31–39. [Google Scholar] [CrossRef]
- Rong, D.; Wang, H.Y.; Ying, Y.B.; Zhang, Z.Y.; Zhang, Y.S. Peach variety detection using VIS-NIR spectroscopy and deep learning. Comput. Electron. Agric. 2020, 175, 105553. [Google Scholar] [CrossRef]
- Ni, C.; Wang, D.Y.; Holmes, M.; Vinson, R. Convolution Neural Network Based Automatic Corn Kernel Qualification. In Proceedings of the Annual International Meeting of The American Society of Agricultural and Biological Engineers, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar]
- Zhang, X.; Lin, T.; Xu, J.; Luo, X.; Ying, Y. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yin, Y.X.; Li, B.; Zhao, C.J.; Li, G.L. Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks. Comput. Electron. Agric. 2021, 181, 105931. [Google Scholar]
- Onmankhong, J.; Ma, T.; Inagaki, T.; Sirisomboon, P.; Tsuchikawa, S. Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples. Infrared Phys. Technol. 2022, 123, 104100. [Google Scholar] [CrossRef]
- Sha, M.; Zhang, D.; Zhang, Z.; Wei, J.; Chen, Y.; Wang, M.; Liu, J. Improving Raman spectroscopic identification of rice varieties by feature extraction. J. Raman Spectrosc. 2019, 51, 702–710. [Google Scholar] [CrossRef]
- Paton, M.; Muinonen, K.; Pesonen, L.J.; Kuosmanen, V.; Kohout, T.; Laitinen, J.; Lehtinen, M. A PCA study to determine how features in meteorite reflectance spectra vary with the samples’ physical properties. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1803–1814. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- Cho, H.W.; Kim, S.; Jeong, M.K.; Park, Y.H. Genetic algorithm-based feature selection in high-resolution NMR spectra. Expert Syst. Appl. 2008, 35, 967–975. [Google Scholar] [CrossRef]
- Wei, Y.Z.; Hu, W.J.; Wu, F.Y.; He, Y. Polysaccharide determination and habitat classification for fresh Dendrobiums with hyperspectral imagery and modified RBFNN. RSC Adv. 2022, 12, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.W.; Bi, S.H.; Shen, T. Application of Successive Projection Algorithm in Nondestructive Detection of Soluble Solid Content in Apple. In Proceedings of the International Conference on Advanced Mechatronic Systems, Kusatsu, Shiga, Japan, 26–28 August 2019. [Google Scholar]
- Feng, X.Y.; Wang, Q.Q.; Zhang, J.; Nie, F.S.; Li, M.L. Studying aromatic compounds in infrared spectra based on support vector machine. Vib. Spectrosc. 2007, 44, 243–247. [Google Scholar]
- Bailey, D.J.; Rose, C.M.; McAlister, G.C.; Brumbaugh, J.; Yu, P.; Wenger, C.D.; Westphall, M.S.; Thomson, J.A.; Coon, J.J. Instant spectral assignment for advanced decision tree-driven mass spectrometry. Proc. Natl. Acad. Sci. USA 2012, 109, 8411–8416. [Google Scholar] [CrossRef]
- Wei, Y.Z.; He, Y.; Li, X.L. Tea moisture content detection with multispectral and depth images. Comput. Electron. Agric. 2021, 183, 106082. [Google Scholar] [CrossRef]
- Bi, X.J. Computional Intelligence; Posts and Telecommunications Press: Beijing, China, 2020. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [PubMed]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Zhu, H.; Qiao, Y.M.; Xu, G.X.; Deng, L.Z.; Yu, Y.F. DSPNet: A Lightweight Dilated Convolution Neural Networks for Spectral Deconvolution with Self-Paced Learning. IEEE Trans. Ind. Inform. 2020, 16, 7392–7401. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.Z.; Xu, J.; Feng, X.P.; Wu, F.Y.; Zhou, R.Q.; Jin, J.J.; Xu, K.W.; Yu, X.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 118, 143112. [Google Scholar]
- Borovikova, E.Y.; Kurazhkovskaya, V.S. Infrared spectra and factor group analysis of vesuvianites in OH region. Vib. Spectrosc. 2005, 39, 95–98. [Google Scholar] [CrossRef]
- Kobori, H.; Higa, S.; Tsuchikawa, S.; Kojima, Y.; Suzuki, S. Segregating wood wastes by repetitive principal component analysis of near infrared spectra. J. Near Infrared Spectrosc. 2017, 25, 180–187. [Google Scholar] [CrossRef]
- Rodrigues, F.; Lourenço, M.; Ribeiro, B.; Pereira, F.C. Learning Supervised Topic Models for Classification and Regression from Crowds. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2409–2422. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Teng, Y.; Li, C.; Jiang, L. Simultaneous quantitative determination of low-concentration ternary pesticide mixtures in wheat flour based on terahertz spectroscopy and BPNN. Food Chem. 2022, 377, 132030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. A novel ResNet101 model based on dense dilated convolution for image classification. SN Appl. Sci. 2022, 4, 9. [Google Scholar] [CrossRef]
Model | Accuracy-Train | Accuracy-Predict |
---|---|---|
SVM | 0.749 | 0.710 |
DT | 0.710 | 0.637 |
BPNN | 0.766 | 0.733 |
Model | Accuracy-Train | Accuracy-Predict |
---|---|---|
BPNN-GA | 0.874 | 0.861 |
BPNN-SPA | 0.841 | 0.826 |
Model | Accuracy-Train | Accuracy-Predict |
---|---|---|
VGG-normal | 0.949 | 0.934 |
VGG-dilated | 0.971 | 0.961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Yang, C.; He, L.; Wu, F.; Yu, Q.; Hu, W. Classification for GM and Non-GM Maize Kernels Based on NIR Spectra and Deep Learning. Processes 2023, 11, 486. https://doi.org/10.3390/pr11020486
Wei Y, Yang C, He L, Wu F, Yu Q, Hu W. Classification for GM and Non-GM Maize Kernels Based on NIR Spectra and Deep Learning. Processes. 2023; 11(2):486. https://doi.org/10.3390/pr11020486
Chicago/Turabian StyleWei, Yuzhen, Chao Yang, Liu He, Feiyue Wu, Qiangguo Yu, and Wenjun Hu. 2023. "Classification for GM and Non-GM Maize Kernels Based on NIR Spectra and Deep Learning" Processes 11, no. 2: 486. https://doi.org/10.3390/pr11020486
APA StyleWei, Y., Yang, C., He, L., Wu, F., Yu, Q., & Hu, W. (2023). Classification for GM and Non-GM Maize Kernels Based on NIR Spectra and Deep Learning. Processes, 11(2), 486. https://doi.org/10.3390/pr11020486