The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Modeling
2.2. Molecular Dynamics Simulations
2.3. Steered Molecular Dynamics Simulation
2.4. Umbrella Sampling
3. Results
3.1. Conformational Differences between GtACR1-trans and Its 13-cis Isomer
3.2. The Formation of Pre-Opened State (K-like) for GtACR1-cis
3.3. Binding Sites of Chloride Ions in E68p-D234p (trans) and E68p-D234p (cis)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
GtACR1 | Guillardia theta anion channelrhodopsin 1 |
ChRs | Channelrhodopsins |
ACR | Anion channel rhodopsin |
TM | Transmemebranes |
EV | Extracellular vestibule |
CCS | Central constriction site |
RSBH | Protonated retinal schiff base |
FTIR | Fourier transform infrared spectroscopy |
RMSD | Root mean square deviation |
ChR2 | Channelrhodopsin-2 |
References
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef]
- Deisseroth, K.; Feng, G.; Majewska, A.K.; Miesenböck, G.; Ting, A.; Schnitzer, M.J. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 2006, 26, 10380–10386. [Google Scholar] [CrossRef]
- Sineshchekov, O.A.; Jung, K.H.; Spudich, J.L. Two rhodopsins mediate phototaxis to low-and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2002, 99, 8689–8694. [Google Scholar] [CrossRef]
- Nagel, G.; Ollig, D.; Fuhrmann, M.; Kateriya, S.; Musti, A.M.; Bamberg, E.; Hegemann, P. Channelrhodopsin-1: A light-gated proton channel in green algae. Science 2002, 296, 2395–2398. [Google Scholar] [CrossRef]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef]
- Rost, B.R.; Schneider-Warme, F.; Schmitz, D.; Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 2017, 96, 572–603. [Google Scholar] [CrossRef] [PubMed]
- Govorunova, E.G.; Sineshchekov, O.A.; Janz, R.; Liu, X.; Spudich, J.L. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 2015, 349, 647–650. [Google Scholar] [CrossRef]
- Sineshchekov, O.A.; Govorunova, E.G.; Li, H.; Spudich, J.L. Gating mechanisms of a natural anion channelrhodopsin. Proc. Natl. Acad. Sci. USA 2015, 112, 14236–14241. [Google Scholar] [CrossRef]
- Vogt, N. Algae are the best engineers of optogenetic inhibitors. Nat. Methods 2015, 12, 806–807. [Google Scholar] [CrossRef]
- Berndt, A.; Lee, S.Y.; Wietek, J.; Ramakrishnan, C.; Steinberg, E.E.; Rashid, A.J.; Kim, H.; Park, S.; Santoro, A.; Frankland, P.W.; et al. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc. Natl. Acad. Sci. USA 2016, 113, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sineshchekov, O.A.; Wu, G.; Spudich, J.L. In vitro activity of a purified natural anion channelrhodopsin. J. Biol. Chem. 2016, 291, 25319–25325. [Google Scholar] [CrossRef]
- Peralvárez-Marín, A.; Garriga, P. Optogenetics Comes of Age: Novel Inhibitory Light-Gated Anionic Channels Allow Efficient Silencing of Neural Function. ChemBioChem 2016, 17, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Sineshchekov, O.A.; Li, H.; Govorunova, E.G.; Spudich, J.L. Photochemical reaction cycle transitions during anion channelrhodopsin gating. Proc. Natl. Acad. Sci. USA 2016, 113, E1993–E2000. [Google Scholar] [CrossRef] [PubMed]
- Yi, A.; Mamaeva, N.; Li, H.; Spudich, J.L.; Rothschild, K.J. Resonance Raman study of an anion channelrhodopsin: Effects of mutations near the retinylidene Schiff base. Biochemistry 2016, 55, 2371–2380. [Google Scholar] [CrossRef]
- Doi, S.; Tsukamoto, T.; Yoshizawa, S.; Sudo, Y. An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli . Sci. Rep. 2017, 7, 41879. [Google Scholar] [CrossRef] [PubMed]
- Yi, A.; Li, H.; Mamaeva, N.; Fernandez De Cordoba, R.E.; Lugtenburg, J.; DeGrip, W.J.; Spudich, J.L.; Rothschild, K.J. Structural changes in an anion channelrhodopsin: Formation of the K and L intermediates at 80 K. Biochemistry 2017, 56, 2197–2208. [Google Scholar] [CrossRef]
- Sineshchekov, O.A.; Govorunova, E.G.; Li, H.; Wang, X.; Spudich, J.L. Opposite charge movements within the photoactive site modulate two-step channel closing in GtACR1. Biophys. J. 2019, 117, 2034–2040. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Miyoshi, N.; Shibukawa, A.; Chowdhury, S.; Tsujimura, M.; Noji, T.; Ishikita, H.; Yamanaka, A.; Sudo, Y. Green-sensitive, long-lived, step-functional anion channelrhodopsin-2 variant as a high-potential neural silencing tool. J. Phys. Chem. Lett. 2020, 11, 6214–6218. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kato, H.E.; Yamashita, K.; Ito, S.; Inoue, K.; Ramakrishnan, C.; Fenno, L.E.; Evans, K.E.; Paggi, J.M.; Dror, R.O.; et al. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 2018, 561, 343–348. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.Y.; Govorunova, E.G.; Schafer, C.T.; Sineshchekov, O.A.; Wang, M.; Zheng, L.; Spudich, J.L. Crystal structure of a natural light-gated anion channelrhodopsin. Elife 2019, 8, e41741. [Google Scholar] [CrossRef]
- Dreier, M.A.; Althoff, P.; Norahan, M.J.; Tennigkeit, S.A.; El-Mashtoly, S.F.; Lübben, M.; Kötting, C.; Rudack, T.; Gerwert, K. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin. Commun. Biol. 2021, 4, 578. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, M.; Noji, T.; Saito, K.; Kojima, K.; Sudo, Y.; Ishikita, H. Mechanism of absorption wavelength shifts in anion channelrhodopsin-1 mutants. Biochim. Biophys. Acta (BBA) Bioenerg. 2021, 1862, 148349. [Google Scholar] [CrossRef]
- Tsujimura, M.; Kojima, K.; Kawanishi, S.; Sudo, Y.; Ishikita, H. Proton transfer pathway in anion channelrhodopsin-1. Elife 2021, 10, e72264. [Google Scholar] [CrossRef]
- Kuhne, J.; Eisenhauer, K.; Ritter, E.; Hegemann, P.; Gerwert, K.; Bartl, F. Early Formation of the Ion-Conducting Pore in Channelrhodopsin-2. Angew. Chem. Int. Ed. 2015, 54, 4953–4957. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N· log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Hammonds, K.D.; Ryckaert, J.P. On the convergence of the SHAKE algorithm. Comput. Phys. Commun. 1991, 62, 336–351. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 2004, 32, W665–W667. [Google Scholar] [CrossRef] [PubMed]
- Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 2001, 11, 224–230. [Google Scholar] [CrossRef]
- Jalily Hasani, H.; Ganesan, A.; Ahmed, M.; Barakat, K.H. Effects of protein–protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS ONE 2018, 13, e0191905. [Google Scholar] [CrossRef]
- Mücksch, C.; Urbassek, H.M. Accelerating steered molecular dynamics: Toward smaller velocities in forced unfolding simulations. J. Chem. Theory Comput. 2016, 12, 1380–1384. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Berteotti, A.; Ronsisvalle, S.; Rocchia, W.; Cavalli, A. Steered molecular dynamics simulations for studying protein–ligand interaction in cyclin-dependent kinase 5. J. Chem. Inf. Model. 2014, 54, 470–480. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 932–942. [Google Scholar] [CrossRef]
- Akhshi, P.; Wu, G. Umbrella sampling molecular dynamics simulations reveal concerted ion movement through G-quadruplex DNA channels. Phys. Chem. Chem. Phys. 2017, 19, 11017–11025. [Google Scholar] [CrossRef]
- Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Volkov, O.; Kovalev, K.; Polovinkin, V.; Borshchevskiy, V.; Bamann, C.; Astashkin, R.; Marin, E.; Popov, A.; Balandin, T.; Willbold, D.; et al. Structural insights into ion conduction by channelrhodopsin 2. Science 2017, 358, eaan8862. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.E.; Zhang, F.; Yizhar, O.; Ramakrishnan, C.; Nishizawa, T.; Hirata, K.; Ito, J.; Aita, Y.; Tsukazaki, T.; Hayashi, S.; et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 2012, 482, 369–374. [Google Scholar] [CrossRef]
- Krause, B.S.; Kaufmann, J.C.; Kuhne, J.; Vierock, J.; Huber, T.; Sakmar, T.P.; Gerwert, K.; Bartl, F.J.; Hegemann, P. Tracking pore hydration in channelrhodopsin by Site-Directed Infrared-Active azido probes. Biochemistry 2019, 58, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Lórenz-Fonfría, V.A.; Bamann, C.; Resler, T.; Schlesinger, R.; Bamberg, E.; Heberle, J. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc. Natl. Acad. Sci. USA 2015, 112, E5796–E5804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xin, Q.; Qin, C.; Jiang, M.; Lo, G.V.; Dou, Y.; Yuan, S. The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation. Processes 2023, 11, 510. https://doi.org/10.3390/pr11020510
Liu C, Xin Q, Qin C, Jiang M, Lo GV, Dou Y, Yuan S. The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation. Processes. 2023; 11(2):510. https://doi.org/10.3390/pr11020510
Chicago/Turabian StyleLiu, Chunyan, Qi Xin, Cai Qin, Maorui Jiang, Glenn V. Lo, Yusheng Dou, and Shuai Yuan. 2023. "The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation" Processes 11, no. 2: 510. https://doi.org/10.3390/pr11020510
APA StyleLiu, C., Xin, Q., Qin, C., Jiang, M., Lo, G. V., Dou, Y., & Yuan, S. (2023). The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation. Processes, 11(2), 510. https://doi.org/10.3390/pr11020510