Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorbents
2.2. Seawater Sampling
2.3. Sorption of 137Cs
2.4. Determination of 137Cs Activity in Sorbent Samples
2.5. Determination of Cesium Concentration
3. Results and Discussion
3.1. Evaluation of the Sorption Efficiency of 137Cs by Various Sorbents
- Pump 250 L of seawater into a container on board the vessel while simultaneously filtering seawater through a polypropylene filter with a pore diameter of 1 µm;
- Add a sample of cesium nitrate to the seawater in the container to a concentration of 2–3 mg/L of cesium to assess the sorption efficiency, then leave for 5–6 h to equalize the concentration of cesium in the entire volume of the container;
- Load 50 mL of Niket, Uniket, Termoxid 35, FIC sorbent, or 100 mL of FSS or Anfezh sorbent into the column;
- Pass 250 L of prepared seawater through the column with the sorbent at a speed of 2–4 CV/min;
- Periodically (every 10–20 L), take a sample of seawater passed through the sorbent to assess the sorption efficiency of stable cesium;
- After sorption, dry the sorbent in an oven at a temperature of 70–80 °C and place it in a Petri dish;
- Determine the activity of 137Cs in the sorbent on a scintillation gamma spectrometer with an exposure of at least 24 h to achieve a measurement error of no more than 10%.
3.2. Surface Distribution of 137Cs in the Black Sea in Spring 2022
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotelyanets, E.A.; Gurov, K.I.; Tikhonova, E.A.; Kondratev, S.I. Pollutants in Bottom Sediments in the Balaklava Bay (the Black Sea). Phys. Oceanogr. 2019, 26, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Buesseler, K.O.; Livingston, H.D. Time-Series Profiles of 134CS, 137CS and 90SR in the Black Sea. In Sensitivity to Change: Black Sea, Baltic Sea and North Sea. NATO ASI Series (Series 2: Environment); Özsoy, E., Mikaelyan, A., Eds.; Springer: Dordrecht, The Netherlands, 1997; Volume 27, pp. 239–251. [Google Scholar] [CrossRef]
- Egorov, V.N.; Povinec, P.P.; Polikarpov, G.G.; Stokozov, N.A.; Gulin, S.B.; Kulebakina, L.G.; Osvath, I. 90Sr and 137Cs in the Black Sea after the Chernobyl NPP accident: Inventories, balance and tracer applications. J. Environ. Radioact. 1999, 43, 137–155. [Google Scholar] [CrossRef]
- Staneva, J.V.; Buesseler, K.O.; Stanev, E.V.; Livingston, H.D. The application of radiotracers to a study of Black Sea circulation: Validation of numerical simulations against observed weapons testing and Chernobyl 137Cs data. J. Geophys. Res. 1999, 104, 11099–11114. [Google Scholar] [CrossRef]
- Gulin, S.B.; Mirzoyeva, N.Y.; Egorov, V.N.; Polikarpov, G.G.; Sidorov, I.G.; Proskurnin, V.Y. Secondary radioactive contamination of the Black Sea after Chernobyl accident: Recent levels, pathways and trends. J. Environ. Radioact. 2013, 124, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Gulin, S.B.; Egorov, V.N.; Duka, M.S.; Sidorov, I.G.; Proskurnin, V.Y.; Mirzoyeva, N.Y.; Bey, O.N.; Gulina, L.V. Deep-water profiling of 137Cs and 90Sr in the Black Sea. A further insight into dynamics of the post-Chernobyl radioactive contamination. J. Radioanal. Nucl. Chem. 2015, 304, 779–783. [Google Scholar] [CrossRef]
- Delfanti, R.; Özsoy, E.; Kaberi, H.; Schirone, A.; Salvi, S.; Conte, F.; Tsabaris, C.; Papucci, C. Evolution and fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea. J. Mar. Syst. 2014, 135, 117–123. [Google Scholar] [CrossRef]
- Lehto, J.; Hou, X. Chemistry and Analysis of Radionuclides. Laboratory Techniques and Methodology; Wiley-VCH: Weinheim, Germany, 2011; 426p. [Google Scholar]
- Yarusova, S.B.; Shichalin, O.O.; Belov, A.A.; Azon, S.A.; Buravlev, I.Y.; Golub, A.V.; Mayorov, V.Y.; Gerasimenko, A.V.; Papynov, E.K.; Ivanets, A.I.; et al. Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique. Ceram. Int. 2021, 48, 3808–3817. [Google Scholar] [CrossRef]
- Ohara, E.; Soejima, T.; Ito, S. Removal of low concentration Cs(I) from water using Prussian blue. Inorg. Chim. Acta 2021, 514, 120029. [Google Scholar] [CrossRef]
- Le, Q.T.N.; Cho, K. Caesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide. J. Colloid Interface Sci. 2021, 581, 741–750. [Google Scholar] [CrossRef]
- El-Shazly, E.A.A.; Dakroury, G.A.; Someda, H.H. Sorption of 134Cs radionuclide onto insoluble ferrocyanide loaded silica-gel. J. Radioanal. Nucl. Chem. 2021, 329, 437–449. [Google Scholar] [CrossRef]
- Bondar, Y.; Olkhovyk, Y.; Kuzenko, S. Nanocomposite adsorbent based on polyacrylonitrile fibers for rapid and selective removal of Cs radionuclides. J. Radioanal. Nucl. Chem. 2021, 330, 1221–1231. [Google Scholar] [CrossRef]
- Gordienko, P.S.; Yarusova, S.B.; Shabalin, I.A.; Slobodyuk, A.B.; Nekhlyudova, E.A.; Shichalin, O.O.; Papynov, E.K.; Kuryavyi, V.G.; Polyakova, N.V.; Parot’kina, Y.A. Synthesis of Calcium Aluminosilicates from Nanostructured Synthetic Na Zeolites and Study of Their Sorption Properties. Russ. J. Inorg. Chem. 2022, 67, 1393–1399. [Google Scholar] [CrossRef]
- Panasenko, A.E.; Shichalin, O.O.; Yarusova, S.B.; Ivanets, A.I.; Belov, A.A.; Dran’kov, A.N.; Azon, S.A.; Fedorets, A.N.; Buravlev, I.Y.; Mayorov, V.Y.; et al. A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization. Nucl. Eng. Technol. 2022, 54, 3250–3259. [Google Scholar] [CrossRef]
- Mann, D.R.; Casso, S.A. In situ chemisorption of radiocesium from seawater. Mar. Chem. 1984, 14, 307–318. [Google Scholar] [CrossRef]
- Breier, C.F.; Pike, S.M.; Sebesta, F.; Tradd, K.; Breier, J.A.; Buesseler, K.O. New applications of KNiFC-PAN resin for broad scale monitoring of radiocesium following the Fukushima Dai-ichi nuclear distaster. J. Radioanal. Nucl. Chem. 2016, 307, 2193–2200. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Kremenchutskii, D.A.; Bezhin, N.A.; Kozlovskaia, O.N.; Milyutin, V.V.; Kozlitin, E.A. Distribution of 137Cs in the Surface Mixed Layer of the Black Sea in summer 2017. Phys. Oceanol. 2020, 36, 387–396. [Google Scholar] [CrossRef]
- Avramenko, V.A.; Egorin, A.M.; Papynov, E.K.; Sokol’nitskaya, T.A.; Tananaev, I.G.; Sergienko, V.I. Processes for treatment of liquid radioactive waste containing seawater. Radiochemistry 2017, 59, 407–413. [Google Scholar] [CrossRef]
- Egorin, A.M.; Palamarchuk, M.S.; Tokar’, E.A.; Tutov, M.V.; Azarova, Y.A.; Tananaev, I.G.; Avramenko, V.A. Sorption of 137Cs from seawater onto resorcinol–formaldehyde resin. Radiochemistry 2017, 59, 160–165. [Google Scholar] [CrossRef]
- Egorin, A.; Tokar, E.; Zemskova, L.; Didenko, N.; Portnyagin, A.; Azarova, Y.; Palamarchuk, M.; Tananaev, I.; Avramenko, V. Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Sep. Sci. Technol. 2017, 52, 1983–1991. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Bezhin, N.A.; Tananaev, I.G. Sorption methods in marine radiochemistry. Russ. Chem. Rev. 2021, 90, 1544–1565. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Dovhyi, I.I.; Milyutin, V.V.; Kaptakov, V.O.; Kozlitin, E.A.; Egorin, A.M.; Tokar’, E.A.; Tananaev, I.G. Study of sorbents for analysis of radiocesium in seawater samples by one-column method. J. Radioanal. Nucl. Chem. 2021, 327, 1095–1103. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Dovhyi, I.I.; Tokar, E.A.; Tananaev, I.G. Physical and chemical regularities of cesium and strontium recovery from the seawater by sorbents of various types. J. Radioanal. Nucl. Chem. 2021, 330, 1101–1111. [Google Scholar] [CrossRef]
- Leppänen, A.-P.; Kasatkina, N.; Vaaramaa, K.; Matishov, G.G.; Solatie, D. Selected anthropogenic and natural radioisotopes in the Barents Sea and off the western coast of Svalbard. J. Environ. Radioact. 2013, 126, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Remez, V.P.; Sapozhnikov, Y.A. The rapid determination of caesium radionuclides in water systems using composite sorbents. Appl. Radiat. Isot. 1996, 47, 885–886. [Google Scholar] [CrossRef]
- Remez, V.P.; Zheltonozhko, E.V.; Sapozhnikov, Y.A. The Experience of Using ANFEZH Sorbent for Recovery of Radioactive Caesium from Sea Water. Radiat. Prot. Dosim. 1998, 75, 77–78. [Google Scholar] [CrossRef]
- Semenishchev, V.S.; Pyankov, A.A.; Remez, V.P.; Afonin, Y.D.; Nikiforov, A.F. Study of physicochemical and sorption properties of nickel and iron hexacyanoferrates to cesium. Sorpt. Chromatogr. Process 2020, 20, 54–63. (In Russian) [Google Scholar] [CrossRef]
- Matel, L.; Dulanska, S.; Silikova, V. Composite sorbents for radionuclide separation. In XXXIX Days of Radiation Protection. Proceedings of Presentations and Posters; Slovenska Zdravotnicka Univerzita: Bratislava, Slovakia, 2018; p. 578. [Google Scholar]
- Nada, A.M.A.; Moussa, W.M.; El-Mongy, S.A.; El-Sayed, E.S.A. Physicochemical Studies of Cation Ion Exchange Wood Pulp. Aust. J. Basic Appl. Sci. 2009, 3, 9–16. [Google Scholar]
- Sharygin, L.M.; Muromskii, A.Y. Inorganic Sorbent for Ion-Selective Purification of Liquid Radioactive Wastes. At. Energy 2000, 89, 658–662. [Google Scholar] [CrossRef]
- Sharygin, L.M.; Muromskii, A.Y. Inorganic Sorbent for Selective Treatment of Liquid Radioactive Wastes. Radiochemistry 2004, 46, 185–189. [Google Scholar] [CrossRef]
- Voronina, A.V.; Noskova, A.Y.; Semenishchev, V.S.; Gupta, D.K. Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J. Environ. Radioact. 2020, 217, 106210. [Google Scholar] [CrossRef]
- Pincam, T.; Jampeetong, A. Treatment of Anaerobic Digester Effluent Using Typha angustifolia L.: Growth Responses and Treatment Efficiency. J. Water Environ. Technol. 2020, 18, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Kadko, D. Upwelling and primaryproduction during the U.S. GEOTRACES East Pacific Zonal Transect. Glob. Biogeochem. Cycles 2017, 31, 218–232. [Google Scholar] [CrossRef]
- Tananaev, I.V.; Seifer, G.B.; Kharitonov, Y.Y.; Kuznetsov, V.G.; Korolkov, A.P. Chemistry of ferrocyanides; Nauka: Moscow, Russia, 1971; 320p. (In Russian) [Google Scholar]
- Lokshin, E.P.; Ivanenko, V.I.; Avsaragov, H.-M.B.; Melnik, N.A.; Vladimirova, V.V.; Kalinnikov, V.T. Purification of water-salt solutions with Ti(IV) and Zr(IV) phosphates. At. Energy 2002, 92, 118–123. (In Russian) [Google Scholar] [CrossRef]
- Gulin, S.B.; Egorov, V.N. Radioactive Tracers in the Black Sea: A Tool for Environmental Assessment and Ecological Regulation. In Genetics, Evolution and Radiation; Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C., Eds.; Springer: Cham, Germany, 2016; pp. 303–313. [Google Scholar]
- Mirzoeva, N.Y.; Gulin, S.B.; Miroshnichenko, O.N. Radionuclides of strontium and cesium. In Black Sea System; Lisitsyn, A.P., Ed.; Scientific World: Moscow, Russia, 2018; Volume 7.2, pp. 605–624. (In Russian) [Google Scholar]
- Radiation Safety Standards (RSS-99/2009); Sanitary Rules and Norms 2.6.1.2523-09. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009; 88p. (In Russian)
Sorbent; Technical Conditions (TC) 1 | Manufacturer | View | Granulation, mm | Bulk Density, g/mL | Sorbent Composition | Reference | |
---|---|---|---|---|---|---|---|
Support | Sorption-Active Phase: Content, Mass % | ||||||
Anfezh; TC 2165-003-26301393-99 | SPE Eksorb Ltd. (Yekaterinburg, Russia) | blue irregular granules | 0.1–1.0 | 0.25–0.4 | cellulose | ferric potassium ferrocyanide; not less than 10 | [25,26,27] |
Niket; TC 2165-008-26301393-2005 | green irregular granules | 0.1–2.5 | 0.5–0.7 | cellulose | nickel potassium ferrocyanide; not less than 10 | [23,28] | |
Uniket; TC 2165-012-26301393-2010 | dark-blue irregular granules | 0.1–2.5 | 0.8–1.2 | cellulose | ferric potassium ferrocyanide; not less than 10 | [23,29] | |
FSS; TC 2641-012-57989206-2012 | Frumkin IPCE RAS (Moscow, Russia) | green irregular granules | 0.2–3.0 | 0.5–0.6 | silica gel | nickel potassium ferrocyanide; 8–10 | [18] |
FD-M; TC 2641-019-57983206-2012 | brown irregular granules | 0.5–1.0 | 0.1–0.2 | phosphorylated wood | copper potassium ferrocyanide; 5.0–5.5 | [23,30] | |
FIC; laboratory sample | blue irregular granules | 0.1–1.0 | 0.25–0.4 | activated carbon | iron ferrocyanide; not less than 10 | – | |
Termoxid 35; TC 2641-006-12342266-2004 | JSC “Inorganic Sorbents” (Zarechny, Sverdlovsk region, Russia) | dark-green spherical granules | 0.4–1.5 | 1.1–1.2 | zirconium hydroxide | nickel potassium ferrocyanide; 30–35 | [31,32,33] |
Termoxid 3A; TC 2641-004-12342266-2004 | white spherical granules | 0.4–1.0 | 1.05–1.10 | – | zirconium phosphate | [33] | |
NKF-C | UrFU (Yekaterinburg, Russia) | light-brown irregular granules | 0.2–0.6 | 0.25–0.4 | cellulose | nickel potassium ferrocyanide; not less than 10 | [6] |
Sorbent | Niket | Uniket | Termoxid 35 | FIC | FSS | Anfezh | NKF-C | FD-M | Termoxid 3A |
---|---|---|---|---|---|---|---|---|---|
Sorbent volume V, mL | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Mass of sorbent m, g | 46.5 | 34.5 | 60.0 | 17.5 | 28.6 | 15.0 | 13.0 | 13.0 | 56.5 |
Sorption efficiency E, % | 93.0 | 78.9 | 67.4 | 60.0 | 27.3 | 26.0 | 16.3 | 16.1 | 5.44 |
Sorbent volume V, mL | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Mass of sorbent m, g | 93.0 | 69.0 | 120 | 35.0 | 57.2 | 30.0 | 26.0 | 26.0 | 113 |
Sorption efficiency E, % | 99.3 | 94.8 | 96.5 | 91.6 | 42.1 | 41.7 | 23.2 | 22.5 | 8.07 |
Station Number | Coordinates of Sampling Points | Sorbent | E, % | Asp 137Cs, Bq/m3 | |
---|---|---|---|---|---|
Northern Latitude | Eastern Longitude | ||||
1 | 44.39808 | 33.67864 | Termoxid 35 | 67.3 | 8.73 ± 0.89 |
2 | 44.35120 | 33.70265 | Uniket | 69.8 | 8.73 ± 0.88 |
13 | 44.36246 | 34.12065 | Termoxid 35 | 82.1 | 9.75 ± 0.79 |
14 | 44.48178 | 34.20170 | Uniket | 78.7 | 10.0 ± 0.98 |
15 | 44.45617 | 34.20333 | FIC | 64.4 | 9.50 ± 0.95 |
21 | 44.50590 | 34.31795 | FIC | 69.2 | 9.62 ± 1.27 |
25 | 44.54041 | 34.53309 | Termoxid 35 | 79.9 | 9.04 ± 1.07 |
27 | 44.64467 | 34.45784 | FIC | 64.0 | 9.06 ± 0.94 |
27.1 | 44.66783 | 34.43950 | Niket | 95.0 | 8.41 ± 0.79 |
28 | 44.73593 | 34.59710 | FIC | 56.5 | 8.57 ± 0.83 |
31 | 44.62115 | 34.65419 | Termoxid 35 | 79.8 | 9.13 ± 0.75 |
35 | 44.77496 | 34.69233 | FIC | 63.5 | 7.60 ± 0.86 |
39 | 44.67979 | 34.94443 | Niket | 93.8 | 9.12 ± 0.96 |
48 | 44.79867 | 35.15200 | Termoxid 35 | 80.1 | 8.85 ± 0.75 |
57 | 44.71315 | 35.24935 | FIC | 66.5 | 7.33 ± 0.68 |
64 | 44.94662 | 35.28064 | Uniket | 75.0 | 8.62 ± 0.81 |
70 | 44.94445 | 35.36925 | FIC | 66.9 | 9.21 ± 1.01 |
75 | 44.93706 | 35.52754 | Termoxid 35 | 78.1 | 9.03 ± 0.75 |
77 | 44.77019 | 35.52102 | FIC | 64.8 | 9.03 ± 0.92 |
79 | 44.82319 | 35.71791 | Niket | 92.7 | 8.62 ± 0.83 |
85 | 44.93957 | 35.80088 | FIC | 59.3 | 9.66 ± 0.90 |
88 | 44.64783 | 34.79639 | Termoxid 35 | 80.3 | 9.09 ± 0.80 |
89 | 44.69392 | 34.75217 | FIC | 64.3 | 10.4 ± 0.91 |
105 | 44.77917 | 35.00317 | Termoxid 35 | 76.2 | 9.69 ± 0.84 |
106 | 44.73351 | 35.09265 | Termoxid 35 | 73.5 | 9.09 ± 0.85 |
114 | 44.25389 | 33.99746 | FIC | 55.7 | 9.07 ± 0.76 |
116 | 44.24846 | 33.99762 | Termoxid 35 | 78.4 | 9.07 ± 0.82 |
120 | 44.22626 | 33.89136 | FIC | 59.5 | 8.28 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezhin, N.A.; Kremenchutskii, D.A.; Slizchenko, E.V.; Kozlovskaia, O.N.; Shibetskaia, I.G.; Milyutin, V.V.; Tananaev, I.G. Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer. Processes 2023, 11, 603. https://doi.org/10.3390/pr11020603
Bezhin NA, Kremenchutskii DA, Slizchenko EV, Kozlovskaia ON, Shibetskaia IG, Milyutin VV, Tananaev IG. Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer. Processes. 2023; 11(2):603. https://doi.org/10.3390/pr11020603
Chicago/Turabian StyleBezhin, Nikolay A., Dmitriy A. Kremenchutskii, Evgeniy V. Slizchenko, Ol’ga N. Kozlovskaia, Iuliia G. Shibetskaia, Vitaliy V. Milyutin, and Ivan G. Tananaev. 2023. "Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer" Processes 11, no. 2: 603. https://doi.org/10.3390/pr11020603
APA StyleBezhin, N. A., Kremenchutskii, D. A., Slizchenko, E. V., Kozlovskaia, O. N., Shibetskaia, I. G., Milyutin, V. V., & Tananaev, I. G. (2023). Estimation of 137Cs Distribution and Recovery Using Various Types of Sorbents in the Black Sea Surface Layer. Processes, 11(2), 603. https://doi.org/10.3390/pr11020603