Investigation of the Fuel Shape Impact on the MTR Reactor Parameters Using the OpenMC Code
Abstract
:1. Introduction
2. Methodology
2.1. Core Description
2.2. OpenMC Model
2.3. Axial Flux Profile
2.4. Flat Fuel Plates
3. Results and Discussion
3.1. Validation of Core Model
3.2. Axial Flux
3.3. Difference between Flat and Curved Core
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency (IAEA). Applications of Research Reactors; IAEA Nuclear Energy Series No. NP-T-5.3; IAEA: Austria, Vienna, 2014. [Google Scholar]
- International Atomic Energy Agency (IAEA). Research Reactors: Purpose and Future; IAEA: Austria, Vienna, 2016. [Google Scholar]
- Phillips Petroleum Company. Fundamentals in the Operation of Nuclear Test Reactors: Volume 2; University of North Texas Libraries, UNT Digital Library: San Francisco, CA, USA, 1963; Available online: https://digital.library.unt.edu/ark:/67531/metadc100236/ (accessed on 2 June 2022).
- Huffman, J.R. The Materials Testing Reactor Design; U.S. Atomic Energy Commission: Washington, DC, USA, 1953. Available online: https://www.osti.gov/servlets/purl/4406959 (accessed on 19 June 2022).
- World Nuclear Association. Available online: https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/research-reactors.aspx (accessed on 8 November 2022).
- Duderstadt, J.J.; Hamilton, L.J. Nuclear Reactor Analysis, 1st ed; John Wiley & Sons Ltd.: New York, NY, USA, 1976. [Google Scholar]
- Seamone, A. Thermal-Hydraulics Feasibility for an Ultra-Compact Nuclear Reactor Core Assembly. In Proceedings of the 2019 SURF Symposium, Reactor Operations and Engineering, New York, NY, USA, 6 August 2019; Available online: https://www.nist.gov/document/thermal-hydraulics-feasibility-anultra-compact-nuclear-reactor-core (accessed on 12 July 2022).
- Romano, P.K.; Horelik, N.E.; Herman, B.R.; Nelson, A.G.; Forget, B.; Smith, K. OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development. Ann. Nucl. Energy 2015, 82, 90–97. [Google Scholar] [CrossRef] [Green Version]
- MacConnachie, E.L.; Novog, D.R. Measurement, simulation, and uncertainty quantification of the neutron flux at the McMaster Nuclear Reactor. Ann. Nucl. Energy 2021, 151, 107879. [Google Scholar] [CrossRef]
- Alqahtani, M.; Day, S.E.; Buijs, A. OSCAR-4 Code System Comparison and Analysis with a First Order Semi-Empirical Method for Core-Follow Depletion Calculation in McMaster Nuclear Reactor (MNR). CNL Nuclear Rev. 2019, 9, 73–82. [Google Scholar] [CrossRef]
- Alhuzaymi, T.M. Reactor Configurations to Support Advanced Material Research. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2019. [Google Scholar]
- Richardson, B.; Castano, C.H.; King, J.; Alajo, A.; Usman, S. Modeling and validation of approach to criticality and axial flux profile experiments at the Missouri S&T Reactor (MSTR). Nucl. Eng. Des. 2012, 245, 55–61. [Google Scholar]
- Bugis, A.A. Modeling a Nuclear Research Reactor and Radiation Dose Estimation in an Accident Scenario. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2020. [Google Scholar]
Material | Isotopic Composition (Atomic Percentage [a/o]) | |||||
---|---|---|---|---|---|---|
U3Si2-Al (19.75% enriched) | U-238 | (0.129533) | Si-28 | (0.099366) | Si-30 | (0.003326) |
U-235 | (0.032287) | Si-29 | (0.005046) | Al-27 | (0.730443) | |
Wrought 6061 Al-alloy (Cladding) | Al-27 | (0.978233) | Fe-54 | (0.000133) | Cr-52 | (0.000939) |
Si-28 | (0.006140) | Fe-56 | (0.002093) | Cr-53 | (0.000106) | |
Si-29 | (0.000312) | Fe-57 | (0.000048) | Cr-54 | (0.000026) | |
Si-30 | (0.000206) | Fe-58 | (0.000006) | Cu-63 | (0.000811) | |
C-nat | (0.010536) | Cr-50 | (0.000049) | Cu-65 | (0.000362) | |
Cast A356-T6 Al-alloy (Fuel element handle) | Al-27 | (0.928066) | Ti-nat | (0.000736) | Zn-nat | (0.000124) |
Si-28 | (0.061640) | Fe-54 | (0.000031) | Mn-55 | (0.000099) | |
Si-29 | (0.003130) | Fe-56 | (0.000490) | Cu-63 | (0.000029) | |
Si-30 | (0.002063) | Fe-57 | (0.000011) | Cu-65 | (0.000013) | |
C-nat | (0.003567) | Fe-58 | (0.000002) | |||
1100-series Al (Grid plate) | Al-27 | (0.999469) | Cu-63 | (0.000367) | Cu-65 | (0.000164) |
Stainless steel 304 (Handle of C elements) | Fe-54 | (0.040229) | Cr-52 | (0.169327) | Ni-61 | (0.001020) |
Fe-56 | (0.631511) | Cr-53 | (0.019200) | Ni-62 | (0.003253) | |
Fe-57 | (0.014584) | Cr-54 | (0.004779) | Ni-64 | (0.000829) | |
Fe-58 | (0.001941) | Ni-58 | (0.060938) | Mn-55 | (0.020133) | |
Cr-50 | (0.008781) | Ni-60 | (0.023473) | |||
Cadmium | Cd-106 | (0.012500) | Cd-111 | (0.128000) | Cd-114 | (0.287300) |
Cd-108 | (0.008900) | Cd-112 | (0.241300) | Cd-116 | (0.074900) | |
Cd-110 | (0.124900) | Cd-113 | (0.122200) | |||
Copper | Cu(nat *) |
Models | +/− | +/− | ||||
---|---|---|---|---|---|---|
OpenMC | 1.00967 | +/− | 23 | |||
MCNP6 | 1.00765 | +/− | 17 | 202 | +/− | 29 |
(a)SCALE6-CE * | 0.98992 | +/− | 21 | 1975 | +/− | 31 |
(a)SCALE6-MG ** | 0.99009 | +/− | 19 | 1958 | +/− | 30 |
(b)SCALE6-CE * | 1.00888 | +/− | 21 | 79 | +/− | 31 |
(b)SCALE6-MG ** | 1.00947 | +/− | 19 | 20 | +/− | 30 |
(c)SCALE6-CE * | 1.00849 | +/− | 19 | 118 | +/− | 30 |
(c)SCALE6-MG ** | 1.00886 | +/− | 20 | 81 | +/− | 30 |
Models | +/− | +/− | ||||
---|---|---|---|---|---|---|
Curved | 1.00967 | +/− | 23 | |||
Flat | 1.01069 | +/− | 22 | 102 | +/− | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnahdi, A.H.; Alghamdi, A.A.; Almarshad, A.I. Investigation of the Fuel Shape Impact on the MTR Reactor Parameters Using the OpenMC Code. Processes 2023, 11, 637. https://doi.org/10.3390/pr11020637
Alnahdi AH, Alghamdi AA, Almarshad AI. Investigation of the Fuel Shape Impact on the MTR Reactor Parameters Using the OpenMC Code. Processes. 2023; 11(2):637. https://doi.org/10.3390/pr11020637
Chicago/Turabian StyleAlnahdi, Alaa H., Ahmed A. Alghamdi, and Abdullah I. Almarshad. 2023. "Investigation of the Fuel Shape Impact on the MTR Reactor Parameters Using the OpenMC Code" Processes 11, no. 2: 637. https://doi.org/10.3390/pr11020637
APA StyleAlnahdi, A. H., Alghamdi, A. A., & Almarshad, A. I. (2023). Investigation of the Fuel Shape Impact on the MTR Reactor Parameters Using the OpenMC Code. Processes, 11(2), 637. https://doi.org/10.3390/pr11020637