Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method and Equipment
2.2.1. Acid Rheological Test
2.2.2. Acid Etching and Conductivity Test
2.2.3. Permeability Damage Test
3. Result and Discussion
3.1. Rheological Test Results
3.2. Acid Etching and Conductivity Test Results
3.2.1. Mass Change after Acid Etching
3.2.2. Slab Etching Morphology under Different Injection Rates
3.2.3. Slab Etching Morphology under Different Acid Concentrations
3.2.4. Conductivity Test Results
3.3. Permeability Damage Test
4. Conclusions
- (1)
- The viscosity of the cross-linked acid can be maintained at about 80 mPa·s at 120~140 °C, and the viscosity at 160 °C is about 40 mPa·s, indicating that the system has good temperature resistance and shear resistance during the test time;
- (2)
- The etching morphology and conductivity test show that when the injection rate is 50 mL/min, the conductivity is 110 D·cm. With the increase in closure pressure, the decreased conductivity rate is low. The conductivity is closely related to the acid = etching morphology. The experimental results show that the channel-type acid-etching morphology has a large conductivity and is not easy to reduce;
- (3)
- With the decrease in acid concentration, the etching effect worsens, and the conductivity decreases rapidly. When the acid concentration is 10%, the closure pressure increases to 15 MPa, with almost no conductivity. The relationship between conductivity and closure pressure is related to the strength of fracture surface. It is the trend of subsequent research to establish the relationship of acid-etching conductivity considering strength;
- (4)
- The reacted acid pollution mainly occurs at the inlet, forming a dense filter cake, hindering the entry of subsequent residues, and reducing reservoir damage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef] [PubMed]
- Luchechko, A.; Shpotyuk, Y.; Kravets, O.; Zaremba, O.; Szmuc, K.; Cebulski, J.; Ingram, A.; Golovchak, R. Microstructure and luminescent properties of Eu3+-activated MgGa2O4: Mn2+ ceramic phosphors. J. Adv. Ceram. 2020, 9, 432–443. [Google Scholar] [CrossRef]
- Schwalbert, M.P.; Aljawad, M.S.; Hill, A.D.; Zhu, D. Decision Criterion for Acid-Stimulation Method in Carbonate Reservoirs: Matrix Acidizing or Acid Fracturing? SPE J. 2020, 25, 2296–2318. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Y.; Cui, M.; Zhou, F.; Wang, Y.; Liang, C.; Zou, H.; Yao, F. Acid System and Stimulation Efficiency of Multistage AcidFracturing in Porous Carbonate Reservoirs. Processes 2022, 10, 1883. [Google Scholar] [CrossRef]
- Zhao, X.; Cun, X.; Li, N.; Yu, J.; Ren, X.; Shen, F.; Zhu, J.; Zhang, Y.; Ren, Z. Simulation of Volumetric Acid Fracturing Fracture in Low Permeability Carbonate Rock. Pet. Sci. Technol. 2022, 40, 2336–2360. [Google Scholar] [CrossRef]
- Dong, R.; Alpak, F.O.; Wheeler, M.F. Accurate Two-Phase Flow Simulation in Faulted Reservoirs by Combining Two-Point Flux Approximation and Mimetic Finite Difference Methods. SPE J. 2022, 28, 111–129. [Google Scholar] [CrossRef]
- Aljawad, M.S.; Aljulaih, H.; Mahmoud, M.; Desouky, M. Integration of Field, Laboratory, and Modeling Aspects of Acid Fracturing: A Comprehensive Review. J. Pet. Sci. Eng. 2019, 181, 106158. [Google Scholar] [CrossRef]
- Antelo, L.F.; Pournik, M.; Zhu, D.; Hill, A.D. Surface Etching Pattern and Its Effect on Fracture Conductivity in Acid Fracturing. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 19–21 January 2009. [Google Scholar]
- Gou, B. Acid-Etching Fracture Morphology and Conductivity for Alternate Stages of Self-Generating Acid and Gelled Acid during Acid-Fracturing. J. Pet. Sci. Eng. 2021, 200, 108358. [Google Scholar] [CrossRef]
- Jafarpour, H.; Aghaei, H.; Litvin, V.; Ashena, R. Experimental Optimization of a Recently Developed Matrix Acid Stimulation Technology in Heterogeneous Carbonate Reservoirs. J. Pet. Sci. Eng. 2021, 196, 108100. [Google Scholar] [CrossRef]
- Shabani, A.; Jamshidi, S.; Jahangiri, H.R. Application of a Mathematical Method in Calculation of the Skin Variation during a Real Field Acidizing Operation. Chem. Eng. Sci. 2018, 192, 829–839. [Google Scholar] [CrossRef]
- Karimi, M.; Shirazi, M.M.; Ayatollahi, S. Investigating the Effects of Rock and Fluid Properties in Iranian Carbonate Matrix Acidizing during Pre-Flush Stage. J. Pet. Sci. Eng. 2018, 166, 121–130. [Google Scholar] [CrossRef]
- Deng, J.; Mou, J.; Hill, A.D.; Zhu, D. A New Correlation of Acid-Fracture Conductivity Subject to Closure Stress. SPE Prod. Oper. 2012, 27, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Asadollahpour, E. The Etching and Hydraulic Conductivity of Acidized Rough Fractures. J. Pet. Sci. Eng. 2018, 166, 704–717. [Google Scholar] [CrossRef]
- Trejos, D.Y.; Valverde, J.C.; Venturino, E. Dynamics of infectious diseases: A review of the main biological aspects and their mathematical translation. Appl. Math. Nonlinear Sci. 2022, 7, 1–26. [Google Scholar] [CrossRef]
- Sabir, Z.; Umar, M.; Raja, M.A.Z.; Fathurrochman, I.; Hasan, H. Design of Morlet wavelet neural network to solve the non-linear influenza disease system. Appl. Math. Nonlinear Sci. 2022. ahead of print. [Google Scholar] [CrossRef]
- Yan, L.; Sabir, Z.; Ilhan, E.; Asif Zahoor Raja, M.; Gao, W.; Mehmet Baskonus, H. Design of a Computational Heuristic to Solve the Nonlinear Liénard Differential Model. Comput. Model. Eng. Sci. 2023, 136, 201–221. [Google Scholar] [CrossRef]
- Dubey, R.S.; Goswami, P.; Baskonus, H.M.; Gomati, A.T. On the existence and uniqueness analysis of fractional blood glucose-insulin minimal model. Int. J. Model. Simul. Sci. Comput. 2022, 2350008. [Google Scholar] [CrossRef]
- Veeresha, P.; Ilhan, E.; Prakasha, D.G.; Baskonus, H.M.; Gao, W. Regarding on the fractional mathematical model of Tumour invasion and metastasis. Comput. Model. Eng. Sci. 2021, 127, 1013–1036. [Google Scholar] [CrossRef]
- Sui, Y.; Cao, G.; Guo, T.; Li, Z.; Bai, Y.; Li, D.; Zhang, Z. Development of Gelled Acid System in High-Temperature Carbonate Reservoirs. J. Pet. Sci. Eng. 2022, 216, 110836. [Google Scholar] [CrossRef]
- Alhamad, L.; Alrashed, A.; Al Munif, E.; Miskimins, J. Organic Acids for Stimulation Purposes: A Review. SPE Prod. Oper. 2020, 35, 952–978. [Google Scholar] [CrossRef]
- Al-Douri, A.F. A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Wang, Q.; Zhou, F.; Zou, Y.; Yao, E. Study on the Performance of High-Temperature Resistant Cross-Linked Acid for Acid Fracturing of Tight Carbonate Reservoirs. In All Days; ARMA: Santa Fe, NM, USA, 2022; p. ARMA-2022-0318. [Google Scholar] [CrossRef]
- Avtar, S.P.; David, L.H. A New Stimulation Technique: High Strength Crosslinked Acid; Society of Petroleum Engineers; SPE Production & Operations: Richardson, TX, USA, 1980; pp. 49–68. [Google Scholar]
- Li, N.; Dai, J.; Liu, P.; Luo, Z.; Zhao, L. Experimental Study on Influencing Factors of Acid-Fracturing Effect for Carbonate Reservoirs. Petroleum 2015, 1, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Buijse, M.; Maier, R.; Casero, A.; Fornasari, S. Successful High-Pressure/High-Temperature Acidizing with In-Situ Crosslinked Acid Diversion; Society of Petroleum Engineers; SPE Production & Operations: Richardson, TX, USA, 2000; pp. 803–810. [Google Scholar]
- Patil, P.; Sarda, A.; George, S.; Choudhary, Y.K.; Kalgaonkar, R. Non-Iron-Based Composition for In-Situ Crosslinked Gelled Acid System. In All Days; SPE: Doha, Qatar, 2012; p. SPE-156190-MS. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, M.; Song, Q.; Wang, M.; Zhao, X.; Wang, Y. Preparation and Characteristic of Cross-linked Acid for High-temperature Acid Fracturing System of Deep Carbonate Reservoirs. Oilfield Chem. 2016, 33, 601–606. [Google Scholar]
- Fang, H.; Mou, J.; Wang, Y.; Li, C.; Luo, P. Development and evaluation of new high-temperature crosslinked acid. Fault-Block Oil Gas Field 2018, 25, 815–818. [Google Scholar]
- Mehrjoo, H.; Norouzi-Apourvari, S.; Jalalifar, H.; Shajari, M. Experimental Study and Modeling of Final Fracture Conductivity during Acid Fracturing. J. Pet. Sci. Eng. 2021, 208, 109192. [Google Scholar] [CrossRef]
- Chacon, O.G.; Pournik, M. Matrix Acidizing in Carbonate Formations. Processes 2022, 10, 174. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, F.; Zhang, Y.; Wang, Y.; Su, H.; Dong, R.; Wang, Q.; Bai, H. Numerical studies and analysis on reaction characteristics of limestone and dolomite in carbonate matrix acidizing. Geoenergy Sci. Eng. 2022, 222, 211452. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, F.; Mou, J.; Xu, G.; Zhang, S.; Li, Z. A New Method to Improve Long-Term Fracture Conductivity in Acid Fracturing under High Closure Stress. J. Pet. Sci. Eng. 2018, 171, 760–770. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, X.; Gong, F. Development and evaluation of high temperature resistant cross-linked acid fracturing fluid system. Chem. Ind. Eng. 2022, 39, 51–57. [Google Scholar] [CrossRef]
- Hu, J.; Chen, T.; Cheng, F.; Cheng, X.; Zhao, C. Preparation and Application of Hydrophobic Associating Crosslinking Acid Thickener. Oilfield Chem. 2020, 37, 403–408. [Google Scholar] [CrossRef]
- Pournik, M. Laboratory-Scale Fracture Conductivity Created by Acid Etching. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2008. [Google Scholar]
No. | Mineral Contents (%) | ||
---|---|---|---|
Quartz | Calcite | Dolomite | |
1-1# | 0.9 | 96.2 | 2.9 |
1-2# | 0.7 | 95.7 | 3.6 |
1-3# | 1.2 | 96.3 | 2.5 |
No. | Length (cm) | Diameter (cm) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|
2-1# | 5.979 | 2.506 | 10.85 | 0.149 |
2-2# | 5.689 | 2.501 | 9.82 | 0.074 |
2-3# | 5.714 | 2.502 | 11.17 | 0.305 |
Slab No. | Acid | Injection Rate (mL/min) | Total Volume (mL) | Width (mm) |
---|---|---|---|---|
1# | 20% cross-linked acid | 40 | 1000 | 2 |
2# | 20% cross-linked acid | 50 | 1000 | 2 |
3# | 20% cross-linked acid | 60 | 1000 | 2 |
4# | 15% cross-linked acid | 50 | 1000 | 2 |
5# | 10% cross-linked acid | 50 | 1000 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Hou, T.; Wang, F.; Yue, L.; Liu, S.; Yuan, G.; Wang, G.; Liu, Y.; Wang, Q.; Zhou, F. Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid. Processes 2023, 11, 722. https://doi.org/10.3390/pr11030722
Lin H, Hou T, Wang F, Yue L, Liu S, Yuan G, Wang G, Liu Y, Wang Q, Zhou F. Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid. Processes. 2023; 11(3):722. https://doi.org/10.3390/pr11030722
Chicago/Turabian StyleLin, Hai, Tengfei Hou, Fuguo Wang, Long Yue, Shiduo Liu, Guide Yuan, Guoqing Wang, Yong Liu, Qing Wang, and Fujian Zhou. 2023. "Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid" Processes 11, no. 3: 722. https://doi.org/10.3390/pr11030722
APA StyleLin, H., Hou, T., Wang, F., Yue, L., Liu, S., Yuan, G., Wang, G., Liu, Y., Wang, Q., & Zhou, F. (2023). Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid. Processes, 11(3), 722. https://doi.org/10.3390/pr11030722