Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response
Abstract
:1. Introduction
2. Demand Response Model
2.1. Time-Of-Use Price Model
2.2. Electricity Price Elasticity Matrix Model
3. Energy Storage System Model
3.1. Battery Energy Storage System Model
3.2. Hydrogen Energy Storage System Model
4. Upper-Level Optimization Model
4.1. Upper-Level Objective Function
4.1.1. The Load Fluctuation of ADN
4.1.2. User Purchase Cost Satisfaction
4.1.3. Comfort of User
4.2. Upper-Level Constraint
5. Lower-Level Optimization Model
5.1. Lower-Level Objective Function
5.1.1. The LCC of ESS
5.1.2. The Load Fluctuation of ADN
5.1.3. The Voltage Fluctuation of ADN
5.2. Constraints
6. Solution of the Model
6.1. Model Solving Method Based on MOPSO
6.2. A Compromise Solution Selection Method Based on Improved Grey Target Decision
7. Case Studies
7.1. Simulation Experiment Model
7.2. Analysis of Simulation Experiment Results
7.2.1. ESS Configuration Scheme
7.2.2. Analysis of the Stability of ADN throughout Four Weeks
7.2.3. Influence of Different Operation Modes on Stability of ADN
8. Discussion
8.1. Effect on Voltage Quality
8.2. Effect on the Load Level
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variables | |
electricity price set by power supply company before implementation of time-of-use price strategy | |
the peak time price after the implementation of time-of-use price strategy | |
the flat time price after the implementation of time-of-use price strategy | |
the valley time price after the implementation of time-of-use price strategy | |
the charging power of BESS at time | |
the discharge power of BESS at time | |
the charging power of HESS | |
the discharge power of HESS | |
the charging power of EC | |
the hydrogen sent to FC from the HT | |
the price fluctuation range for the peak time | |
the price fluctuation range for the flat time | |
the price fluctuation range for the valley time | |
the price elasticity matrix | |
Abbreviations | |
ADN | active distributed network |
BESS | battery energy storage system |
DG | distributed generation |
DR | demand response |
EC | electrolytic cell |
EWM | entropy weight method |
ESS | energy storage system |
FC | fuel cell |
HT | hydrogen tank |
HESS | hydrogen energy storage system |
IGTDM | improved grey target decision making |
LCC | life cycle cost |
MOMA | multi-objective mayfly algorithm |
MOPSO | multi-objective particle swarm |
References
- Yang, B.; Li, J.; Shu, H.; Cai, Z.; Tang, B.; Huang, X.; Zhu, M. Recent advances of optimal sizing and location of charging stations: A critical overview. Int. J. Energy Res. 2022, 43, 17899–17925. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Cao, P.; Zhu, T.; Shu, H.; Chen, J.; Zhang, J.; Zhu, J. Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey. J. Energy Storage 2021, 32, 102572. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Chen, Y.; Li, D.; Zeng, C.; Chen, Y.; Guo, Z.; Shu, H.; Zhang, X.; Yu, T.; et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook. J. Energy Storage 2020, 32, 101814. [Google Scholar] [CrossRef]
- Yang, B.; Liu, B.; Zhou, H.; Wang, J.; Yao, W.; Wu, S.; Shu, H.; Ren, Y. A critical survey of technologies of large offshore wind farm integration: Summarization, advances, and perspectives. Prot. Control Mod. Power Syst. 2022, 7, 17. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, G.; Li, K.; Li, B.; Chi, H.; Yao, Y.; Fan, Z. Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles. Prot. Control Mod. Power Syst. 2022, 7, 51. [Google Scholar] [CrossRef]
- Fu, X.; Wu, X.; Zhang, C.; Fan, S.; Liu, N. Planning of distributed renewable energy systems under uncertainty based on statistical machine learning. Prot. Control Mod. Power Syst. 2022, 7, 41. [Google Scholar] [CrossRef]
- Murty, V.V.S.N.; Kumar, A. Retraction Note: Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Prot. Control Mod. Power Syst. 2022, 7, 11. [Google Scholar] [CrossRef]
- Yang, J.J.; Cheng, R.F.; Xu, L.B. Multi-objective optimization simulation of active distribution network considering new energy access. Comput. Simul. 2022, 39, 108–113. [Google Scholar]
- Zhu, P.X.; Guo, Q.; Li, L.Z.; Zheng, D.; Cai, H. Distributed energy storage configuration considering the vulnerability of active distribution network. Electr. Meas. Instrum. 2023, 1–8. Available online: http://kns.cnki.net/kcms/detail/23.1202.TH.20221019.1512.014.html (accessed on 20 October 2022).
- Yue, Y.Y.; Wang, Z.D.; Wang, H.; Luo, X.; Su, Z.; Hui, Z.J. Day-Ahead Optimal Dispatch for Active Distribution Network Considering the Action Cost of Devices. Electr. Power 2023, 1–12. Available online: http://kns.cnki.net/kcms/detail/11.3265.tm.20221221.0945.002.html (accessed on 23 December 2022).
- Yang, P.; Yu, D.; Guo, Y.H.; Zhang, S.C. Optimization model of new energy accommodation considering demand response. Distrib. Util. 2022, 39, 79–86. [Google Scholar] [CrossRef]
- Ding, W.; Yuan, J.H.; Hu, Z.G. Time-of-use price decision model considering users reaction and satisfaction index. Power Syst. Autom. 2005, 29, 10–14. [Google Scholar]
- Yang, H.Z.; Li, M.L.; Jiang, Z.Y. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response. Power Syst. Prot. Control 2020, 48, 30–37. [Google Scholar] [CrossRef]
- Li, Z.L.; Liu, R.H. Operation optimization of regional integrated energy system with energy storage considering demand response. Mod. Electr. Power 2019, 36, 61–67. [Google Scholar] [CrossRef]
- Zhang, C.; Zuo, G.; Teng, Z.S. Optimal dispatch of distribution network considering demand response. Intell. Sched. 2020, 48, 53–58. [Google Scholar]
- Zhao, F.; Xue, L.J.; Zhu, J.L. An energy storage capacity allocation method for power system based on improved particle swarm optimization. Zhejiang Electr. Power 2022, 41, 17–22. [Google Scholar] [CrossRef]
- An, D.; Yang, D.Y.; Wu, W.L.; Cai, W.; Li, H.; Yang, B.; Han, Y. Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multi-objective mayfly algorithm. Power Syst. Prot. Control 2022, 50, 1–39. [Google Scholar] [CrossRef]
- Ding, Q.; Zeng, P.L.; Sun, Y.K. A planning method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources. Energy Storage Sci. Technol. 2020, 9, 162–169. [Google Scholar] [CrossRef]
- Xu, C.B.; Liu, J.G. Hydrogen energy storage in China’s new-type power system: Application value, challenges, and prospects. Strateg. Study CAE 2022, 24, 89–99. [Google Scholar] [CrossRef]
- Qiu, B.; Mu, H.B.; Wang, K.; Zhang, Z.C.; Yang, Z. Optimal dispatching of hydrogen coupling IES considering mixed transmission of hydrogen and natural gas. Proc. CSU-EPSA 2022, 34, 51–59. [Google Scholar] [CrossRef]
- Zhou, Z.L. Energy efficiency analysis of hydrogen storage coupled gas-steam combined cycle. Acta Energ. Sol. Sin. 2021, 42, 39–45. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Xue, L.; Liu, C.; Song, F.; Sun, Y.; Che, B. Research on planning optimization of integrated energy system based on the differential features of hybrid energy storage system. J. Energy Storage 2022, 55, 105368. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.F.; Zhong, H.M.; Wang, X.; Lei, X.; Yin, H.; Liu, X. Configuration method for hydrogen-electricity hybrid energy storage system in transmission grid with high proportion of PV and wind power connection. Electr. Power Constr. 2022, 43, 85–98. [Google Scholar] [CrossRef]
- Chen, C.; Hu, B.; Xie, K.; Wan, L.; Xiang, B. A peak-valley TOU price model considering power system reliability and power purchase risk. Power Grid Technol. 2014, 38, 2141–2148. [Google Scholar] [CrossRef]
- Guizhou Provincial Development and Reform Commission. Notice of Provincial Development and Reform Commission on Matters Related to the Trial of Peak and Valley TOU Electricity Price [EB/OL]. (31 August 2021). Available online: http://fgw.guizhou.gov.cn/zwgk/gzhgfxwjsjk/gfxwjsjk/202110/t20211019_70938120.html (accessed on 9 November 2022).
- Harvey, H.L.D. Clarifications of and improvements to the equations used to calculate the levelized cost of electricity (LCOE), and comments on the weighted average cost of capital (WACC). Energy 2020, 207, 118340. [Google Scholar] [CrossRef]
- Xue, J.H.; Ye, J.L.; Tao, Q.; Wang, D.; Sang, B.; Yang, B. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model. Power Grid Technol. 2016, 40, 2471–2476. [Google Scholar] [CrossRef]
- Feng, L.; Kong, Q.Y.; Guo, L. An algorithm for Short-term Electrical Load Forecasting Based on Multi-objective Particle Swarm Optimization. Power Syst. Technol. 2006, S2, 265–268. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Ji, Z.C. Dynamic multiple-fuels economic environmental dispatch using multi-objective particle swarm optimization. Control Decis. 2018, 33, 1255–1263. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yang, Z.; Cai, W.; Zhou, B. Multi-objective optimal configuration of electricity-hydrogen hybrid energy storage system in zero-carbon park. Electr. Power Constr. 2022, 43, 1–12. [Google Scholar] [CrossRef]
- Yang, H.H.; Wang, J.; Tai, N.; Ding, Y. Robust optimization of distributed generation in a microgrid based on grey target decision-making and multi-objective cuckoo search algorithm. Power Syst. Prot. Control 2019, 47, 20–27. [Google Scholar] [CrossRef]
- Yang, B.; Yu, L.; Chen, Y.; Ye, H.; Shao, R.; Shu, H.; Sun, L. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey. Int. J. Energy Res. 2020, 45, 3615–3642. [Google Scholar] [CrossRef]
- Lu, L.M.; Chu, G.W.; Zhang, T.; Yang, Z.C. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization. Power Syst. Prot. Control 2020, 48, 116–124. [Google Scholar]
- Akbari, R.; Hedayatzadeh, R.; Ziarati, K.; Hassanizadeh, B. A multi-objective artificial bee colony algorithm. Swarm Evol. Comput. 2012, 2, 39–52. [Google Scholar] [CrossRef]
- Reynoso-Meza, G. Multi-objective Differential Evolution Algorithm with Spherical Pruning with-MATLAB Central File Exchange. Available online: https://ww2.mathworks.cn/matlabcentral/fileexchange/39215-multi-objective-differential-evolution-algorithm-with-spherical-pruning?s_tid=ta_fx_results (accessed on 27 November 2012).
- Yan, Y.; Zhang, C.H.; Li, K.; Wang, Z. An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage. Energy 2018, 210, 1151–1166. [Google Scholar] [CrossRef]
- Liu, J.; Cao, S.; Chen, X.; Yang, H.; Peng, J. Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage. Appl. Energy 2021, 281, 116038. [Google Scholar] [CrossRef]
- David, B.; Paolo, M.; Domenico, F.; Kyrre, S. Massimo santarelli. life cycle environmental analysis of a hydrogen-based energy storage system for remote applications. Energy Rep. 2022, 8, 5080–5092. [Google Scholar] [CrossRef]
- Si, Y.; Chen, L.; Chen, X.; Gao, M.; Ma, L.; Mei, S. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust. Power Autom. Equip. 2021, 41, 3–10. [Google Scholar] [CrossRef]
- Yang, B.; Yu, L.; Wang, J.T.; Shu, H.; Cao, P.; Yu, T. Optimal sizing and placement of distributed generation using adaptive manta ray foraging optimization. J. Shanghai Jiaotong Univ. 2021, 55, 1673–1688. [Google Scholar] [CrossRef]
- Ankit, U.; Saumendra, S. Optimal network reconfiguration and DG allocation using adaptive modified whale optimization algorithm considering probabilistic load flow. Electr. Power Syst. Res. 2021, 192, 106909. [Google Scholar] [CrossRef]
- Zheng, C.L.; Wu, Y.J.; Chen, Y.Q.; Ye, J.W.; Zheng, T.; Wei, L.L.; Wu, S. Optimal Siting and Sizing of Energy Storage Based on Non-dominated Sorting of Improved Bat Algorithm. Distrib. Util. 2021, 38, 107–115. [Google Scholar] [CrossRef]
The Parameter of ADN | Value |
---|---|
System reference capacity | 10 MVA |
Load power | (3715 + j2300) kVA |
Voltage reference value | 12.66 kV |
Algorithm | Main Parameters | Value |
---|---|---|
MOPSO | Self-learning factor | 1.4962 |
Group learning factor | 1.4962 | |
Maximum inertia factor | 0.9 | |
Minimum inertia factor | 0.4 | |
MODE | Scaling factor | 0.9 |
Cross factor | 0.4 | |
Generation boundary | 10,000 | |
MOABC | Food source improvement factor | 5 |
ESS Type | Parameters | Value |
---|---|---|
BESS | The cost of battery | 1000 (USD/kW h) |
The cost of converter | 700 (USD/kW) | |
Charge efficiency | 96% | |
Discharge efficiency | 96% | |
HESS | The cost of EC | 900 (USD/kW) |
The cost of FC | 430(USD/kW) | |
The cost of HT | 10 (USD/kg) | |
EC efficiency | 68% | |
FC efficiency | 65% |
Load Fluctuation (MW/Day) | User Purchase Cost Satisfaction Index | Comfort of User | |
---|---|---|---|
Ordinary electricity price | 7.7528 | 1.0 | 0 |
Time-of-use electricity price formulated by MOPSO | 7.0885 | 0.8666 | 0.0057 |
Time-of-use electricity price formulated by MODE | 7.0758 | 0.8677 | 0.0053 |
Time-of-use electricity price formulated by MOABC | 7.0526 | 0.8762 | 0.0050 |
Configuration Scheme of ESS | Objective Function of Lower Model | |||||||
---|---|---|---|---|---|---|---|---|
BESS | ESS serial number | Nodes | Rated power (MW) | Capacity (MWh) | / | LCC (USD/day) | Load fluctuation (MW/day) | Voltage fluctuation (p.u./day) |
No.1 BESS | 25 | 0.4972 | 1.4421 | / | 3.2855 × 103 | 4.8795 | 0.1246 | |
No.2 BESS | 28 | 0.4869 | 1.4901 | / | ||||
HESS | ESS serial number | Nodes | Rated power of FC (MW) | Rated power of EC (MW) | Capacity of HT (kg) | |||
No.1 HESS | 12 | 0.6164 | 0.9830 | 108.15 | ||||
No.1 HESS | 10 | 0.3410 | 0.7506 | 146.16 |
Configuration Scheme of ESS | Objective Function of Lower Model | |||||||
---|---|---|---|---|---|---|---|---|
BESS | ESS serial number | Nodes | Rated power (MW) | Capacity (MWh) | / | LCC (USD/day) | Load fluctuation (MW/day) | Voltage fluctuation (p.u./day) |
No.1 BESS | 2 | 0.3307 | 0.7217 | / | 1.9522 × 103 | 6.3137 | 0.2126 | |
No.2 BESS | 6 | 0.2336 | 0.5000 | / | ||||
HESS | ESS serial number | Nodes | Rated power of FC (MW) | Rated power of EC (MW) | Capacity of HT (kg) | |||
No.1 HESS | 7 | 0.2446 | 0.6250 | 28 | ||||
No.1 HESS | 10 | 0.2474 | 0.8204 | 44.49 |
Configuration Scheme of ESS | Objective Function of Lower Model | |||||||
---|---|---|---|---|---|---|---|---|
BESS | ESS serial number | Nodes | Rated power (MW) | Capacity (MWh) | / | LCC (USD/day) | Load fluctuation (MW/day) | Voltage fluctuation (p.u./day) |
No.1 BESS | 2 | 0.1639 | 0.5000 | / | 1.3675 × 103 | 6.8495 | 0.2292 | |
No.2 BESS | 8 | 0.2083 | 0.5000 | / | ||||
HESS | ESS serial number | Nodes | Rated power of FC (MW) | Rated power of EC (MW) | Capacity of HT (kg) | |||
No.1 HESS | 2 | 0.0581 | 0.3000 | 31.43 | ||||
No.1 HESS | 31 | 0.4458 | 0.5883 | 28 |
Algorithm | Operation Time |
---|---|
MOPSO | 86 min and 8 s |
MODE | 100 min and 21 s |
MOABC | 83 min and 1 s |
Net Load Fluctuation/(MW) | Voltage Fluctuation/(p.u.) | |
---|---|---|
Initial | 206.51 | 0.2663 |
Consider DR | 190.47 | 0.2969 |
After ESS access | 153.05 | 0.1470 |
Operation Scenarios | Configuration Scheme of BESS | Configuration Scheme of HESS | Objective Function of Lower Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Nodes | Rated Power (MW) | Capacity (MWh) | Nodes | Rated Power of FC (MW) | Rated Power of EC (MW) | Capacity of HT (kg) | LCC (USD/Day) | Load Fluctuation (MW/Day) | Voltage Fluctuation (p.u./Day) | |
Scenario 1 | / | 7.7258 | 0.3318 | |||||||
Scenario 2 | / | 7.0885 | 0.2843 | |||||||
Scenario 3 | [7 19] | [0.9718 0.2773] | [4.000 0.8656] | [28 11] | [0.3818 0.2796] | [1.000 0.9908] | [102.19 59.55] | 3.4581 × 103 | 6.5552 | 0.1745 |
Scenario 4 | [25 28] | [0.4972 0.4869] | [1.4421 1.4901] | [12 10] | [0.6164 0.3410] | [0.9830 0.7506] | [108.15 146.16] | 3.2855 × 103 | 4.8795 | 0.1246 |
Algorithm | Nodes of BESS | Voltage Fluctuation/(p.u.) |
---|---|---|
MOPSO | [2 6] | 0.1246 |
MODE | [2 8] | 0.1255 |
MOABC | [2 31] | 0.1254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Li, Z.; Guo, X.; Yang, B. Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response. Processes 2023, 11, 852. https://doi.org/10.3390/pr11030852
Lu Z, Li Z, Guo X, Yang B. Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response. Processes. 2023; 11(3):852. https://doi.org/10.3390/pr11030852
Chicago/Turabian StyleLu, Zijing, Zishou Li, Xiangguo Guo, and Bo Yang. 2023. "Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response" Processes 11, no. 3: 852. https://doi.org/10.3390/pr11030852
APA StyleLu, Z., Li, Z., Guo, X., & Yang, B. (2023). Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response. Processes, 11(3), 852. https://doi.org/10.3390/pr11030852