Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Component Analysis
2.2.1. Determination of Cellulose and Hemicellulose Content
2.2.2. Determination of Lignin Content
2.3. Process of Enhancing Enzymatic Hydrolysis by DESs
2.4. Enzymatic Hydrolysis
2.5. X-ray Diffraction Analysis
2.6. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.7. Scanning Electron Microscope Analysis
3. Results and Discussion
3.1. Enhancement of Enzymatic Hydrolysis of Wheat Straw with Different DESs
3.2. Influence of Operation Temperature on Enhancing Enzymatic Hydrolysis of Wheat Straw
3.3. Influence of Operation Time on Enhancing Enzymatic Hydrolysis of Wheat Straw
3.4. Severity Factor
3.5. Comparison of Different Chemical Methods for Enhancing Enzymatic Hydrolysis of Wheat Straw
3.6. Characterization Analysis
3.6.1. XRD Analysis
3.6.2. FT-IR Analysis
3.6.3. SEM Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Lu, X.; Liu, X.; Xu, J.; Zhou, Q.; Zhang, S. Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chem. 2017, 19, 2234–2243. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018, 20, 2711–2721. [Google Scholar] [CrossRef]
- Jung, S.J.; Kim, S.H.; Chung, I.M. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 2015, 83, 322–327. [Google Scholar] [CrossRef]
- Fu, D.; Mazza, G.; Tamaki, Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J. Agric. Food Chem. 2010, 58, 2915–2922. [Google Scholar] [CrossRef]
- Hou, X.D.; Feng, G.J.; Ye, M.; Huang, C.-M.; Zhang, Y. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour. Technol. 2017, 238, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Buruiană, C.-T.; Georgescu, L.; Isticioaia, S.-F.; Constantin, O.E.; Vizireanu, C.; Dinică, R.M.; Furdui, B. Insights on monosaccharides and bioethanol production from sweet sorghum stalks using dilute acid pretreatment. Processes 2020, 8, 1486. [Google Scholar] [CrossRef]
- Prasad, S.; Malav, M.K.; Kumar, S.; Singh, A.; Pant, D.; Radhakrishnan, S. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). Bioresour. Technol. Rep. 2018, 4, 50–56. [Google Scholar] [CrossRef]
- Joy, S.P.; Krishnan, C. Modified organosolv pretreatment for improved cellulosic ethanol production from sorghum biomass. Ind. Crops Prod. 2022, 177, 114409. [Google Scholar] [CrossRef]
- Xu, J.; Xu, J.; Zhang, S.; Xia, J.; Liu, X.; Chu, X.; Duan, J.; Li, X. Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour. Technol. 2018, 249, 1058–1061. [Google Scholar] [CrossRef]
- Ma, L.; Goldfarb, J.L.; Ma, Q. Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable ap-proach to rice husk conversion to biofuels. Renew. Energy 2022, 198, 712–722. [Google Scholar] [CrossRef]
- Wang, Z.K.; Li, H.; Lin, X.C.; Tang, L.; Chen, J.J.; Mo, J.W.; Yu, R.S.; Shen, X.J. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour. Technol. 2020, 307, 123237. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Chourasia, V.R.; Pandey, A.; Pant, K.K.; Henry, R.J. Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment. Bioresour. Technol. 2021, 337, 125480. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side. Chem. Commun. 2001, 19, 2010–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, F.A.; Santigosa-Murillo, E.; Ramos-Payán, M.; Muñoz, M.; Øiestad, E.L.; Pedersen-Bjergaard, S. Electromembrane extraction using deep eutectic solvents as the liquid membrane. Anal. Chim. Acta 2021, 1143, 109–116. [Google Scholar] [CrossRef]
- Guo, Z.; Ling, Z.; Wang, C.; Zhang, X.; Xu, F. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour. Technol. 2018, 265, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.K.U.; Hadinoto, K. Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Zulkefli, S.; Abdulmalek, E.; Rahman, M.B.A. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzy-matic hydrolysis of pretreated oil palm trunk. Renew. Energy 2017, 107, 36–41. [Google Scholar] [CrossRef]
- Okur, M.; Koyuncu, D.D.E. Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic solvents. Biomass Bioenergy 2020, 142, 105811. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Yagoub, A.E.-G.A.; Chen, L.; Fakayode, O.A.; Zhou, C. Synergism of sweeping frequency ultrasound and deep eutectic solvents pretreatment for fractionation of sugarcane bagasse and enhancing enzymatic hydrolysis. Ultrason. Sonochem. 2021, 73, 105470. [Google Scholar] [CrossRef]
- Morán-Aguilar, M.G.; Costa-Trigo, I.; Ramírez-Pérez, A.M.; de Blas, E.; Calderón-Santoyo, M.; Aguilar-Uscanga, M.G.; Domínguez, J.M. Development of Sustainable Biorefinery Processes Applying Deep Eutectic Solvents to Agrofood Wastes. Energies 2022, 15, 4101. [Google Scholar] [CrossRef]
- Adeyemi, I.; Abu-Zahra, M.R.M.; AlNashef, I.M. Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: Measurements, group contribution and artificial intelligence prediction techniques. J. Mol. Liq. 2018, 256, 581–590. [Google Scholar] [CrossRef]
- Mamilla, J.L.K.; Novak, U.; Grilc, M.; Likozar, B. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 2019, 120, 417–425. [Google Scholar] [CrossRef]
- Grudniewska, A.; Popłoński, J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep. Purif. Technol. 2020, 250, 117196. [Google Scholar] [CrossRef]
- Rasool, M.H.; Zamir, A.; Elraies, K.A.; Ayoub, M.; Abbas, M.A. Potassium carbonate based deep eutectic solvent (DES) as a potential drilling fluid additive in deep water drilling applications. Pet. Sci. Technol. 2021, 39, 612–631. [Google Scholar] [CrossRef]
- Chen, J.; Ali, M.C.; Liu, R.; Munyemana, J.C.; Li, Z.; Zhai, H.; Qiu, H. Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chin. Chem. Lett. 2020, 31, 1584–1587. [Google Scholar] [CrossRef]
- Fry, S.C. The Growing Plant Cell Wall: Chemical and Metabolic Analysis; The Blackburn Press: Caldwell, NJ, USA, 1988. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Hossain, M.A.; Rahaman, M.S.; Yelle, D.; Shang, H.; Sun, Z.; Renneckar, S.; Dong, J.; Tulaphol, S.; Sathitsuksanoh, N. Effects of polyol-based deep eutectic solvents on the efficiency of rice straw enzymatic hydrolysis. Ind. Crops Prod. 2021, 167, 113480. [Google Scholar] [CrossRef]
- Li, Y.; Zhuo, J.; Liu, P.; Chen, P.; Hu, H.; Wang, Y.; Zhou, S.; Tu, Y.; Peng, L.; Wang, Y. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr. Polym. 2018, 192, 273–281. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Ali, M.F.; Abdeltawab, A.A.; Yakout, S.M.; Yu, G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for im-proving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef]
- Sheng, Y.; Tan, X.; Gu, Y.; Zhou, X.; Tu, M.; Xu, Y. Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues. Renew. Energy 2021, 163, 732–739. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijgen, W.J.J.; Reith, J.H.; den Uil, H. Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind. Eng. Chem. Res. 2010, 49, 10132–10140. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; He, Y.C.; Xian, M.; Jun, G.; Xu, X.; Yang, J.M.; Li, L.Z. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 2009, 100, 3570–3575. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Xiao, J.; He, X.; Zhang, K.; Yuan, S.; Peng, Z.; Chen, Z.; Lin, X. Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega 2019, 4, 19829–19839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Z.; Wang, L.; Huang, B.; Yu, Y.; Liu, J.; Li, T. Synthesis of green deep eutectic solvents for pretreatment wheat straw: Enhance the solubility of typical lignocellulose. Sustainability 2022, 14, 657. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, G.; Ding, C.; Wu, B.; Lian, Z.; Lian, H. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr. Polym. 2017, 176, 307–314. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Abdeltawab, A.; Yakout, S.; Chen, X.; Yu, G. Cholinium amino acids-glycerol mixtures: New class of solvents for pretreating wheat straw to facilitate enzymatic hydrolysis. Bioresour. Technol. 2017, 245, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.A.M.; Mustapha, W.A.W.; Hassan, O. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chem. 2016, 18, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Bai, Y.; Zhang, J.; Liu, D.; Zhao, X. A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification. Bioresour. Bioprocess. 2020, 7, 24. [Google Scholar] [CrossRef]
HBA | HBD | Molar Ratio (HBA: HBD) | Abbreviation | References |
---|---|---|---|---|
Choline chloride | Monoethanolamine | 1:8 | C:M | [22] |
Choline chloride | Potassium hydroxide | 1:6 | C:K | [23] |
Choline chloride | Ethylene glycol | 1:2 | C:EG | [22] |
Choline chloride | Propylene glycol | 1:2 | C:PG | [24] |
Potassium carbonate | Glycerin | 1:8 | K:G | [25] |
Sodium hydroxide | Ethylene glycol | 1:4 | Na:EG | [26] |
DES | C:M | C:K | Na:EG | C:PG | C:EG | K:G |
---|---|---|---|---|---|---|
pH a | 11.6 | 12.9 | 12.3 | 7.7 | 7.3 | 11.3 |
Solvent | Operation Conditions | Lignin Removal Rate | Hemicellulose Removal Rate | Cellulose Preservation Rate | Reducing Sugar Yield | Reference |
---|---|---|---|---|---|---|
1%(w/w)H2SO4 | 160 °C, 1 h | 15.07% | 56.71% | 69.25% | 70.72% | [32] |
2.0%NaOH | 121 °C,1 h | 84% | 31.4% | 80.5% | 60% | [33] |
50% (w/w) Acetone -H2O | 205 °C,1 h | 79% | 82% | 93% | 87% | [34] |
1-Ethyl-3-methylimidazolium diethyl phosphate | 130 °C, 30 min | 54.8% | [35] | |||
Triethylbenzylammonium chloride: lactic acid | 100 °C, 10 h | 79.73% | 66.32% | [36] | ||
Choline chloride: urea (1:2) + 10 wt% H2O + 1 wt% NaOH | 2 h | 61.98% | 42.94% | 81.88% | [37] | |
Na:EG | 90 °C, 5 h | 78.5% | 78.7% | 87.4% | 81.6% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Han, L.; Ma, X.; Sun, X.; Zhao, Z. Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes 2023, 11, 898. https://doi.org/10.3390/pr11030898
Zhao X, Han L, Ma X, Sun X, Zhao Z. Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes. 2023; 11(3):898. https://doi.org/10.3390/pr11030898
Chicago/Turabian StyleZhao, Xuyang, Lihua Han, Xuejiao Ma, Xiaoran Sun, and Zheng Zhao. 2023. "Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions" Processes 11, no. 3: 898. https://doi.org/10.3390/pr11030898
APA StyleZhao, X., Han, L., Ma, X., Sun, X., & Zhao, Z. (2023). Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes, 11(3), 898. https://doi.org/10.3390/pr11030898