Water Invasion Prediction Method for Edge–Bottom Water Reservoirs: A Case Study in an Oilfield in Xinjiang, China
Abstract
:1. Introduction
2. Model Building
2.1. Logistic Model
2.2. GM (1,1) Model
2.3. Improved GM (1,1) Model
3. Case Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Peng, X.; Li, Q.; Li, L.; Hu, D. Progress and development direction of technologies for deep marine carbonate gas reservoirs in the Sichuan Basin. Nat. Gas Ind. B 2020, 7, 149–159. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Zakharov, L.A.; Martyushev, D.A.; Ponomareva, I.N. Predicting dynamic formation pressure using artificial intelligence methods. J. Min. Inst. 2022, 253, 23–32. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Xue, Z.; Zheng, S. Theories and practices of carbonate reservoirs development in China. Pet. Explor. Dev. 2018, 45, 712–722. [Google Scholar] [CrossRef]
- Galkin, V.I.; Martyushev, D.A.; Ponomareva, I.N.; Chernykh, I.A. Developing features of the near-bottomhole zones in productive formations at fields with high gas saturation of formation oil. J. Min. Inst. 2021, 249, 386–392. [Google Scholar] [CrossRef]
- Martyushev, D.A. Improving the geological and hydrodynamic model a carbonate oil object by taking into account the permeability anisotropy parameter. J. Min. Inst. 2020, 243, 313–318. [Google Scholar] [CrossRef]
- Dake, L.P. Fundamentals of Reservoir Engineering; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Zheng, Z.; Zuo, Y.; Wen, H.; Zhang, J.; Zhou, G.; Xu, L.; Sun, H.; Yang, M.; Yan, K.; Zeng, J. Natural gas characteristics and gas-source comparisons of the Lower Triassic Jialingjiang Formation, Eastern Sichuan Basin. J. Pet. Sci. Eng. 2022, 221, 111165. [Google Scholar] [CrossRef]
- Zheng, Z.-Y.; Zuo, Y.-H.; Wen, H.-G.; Li, D.-M.; Luo, Y.; Zhang, J.-Z.; Yang, M.-H.; Zeng, J.-C. Natural gas characteristics and gas-source comparisons of the lower Triassic Feixianguan formation, Eastern Sichuan basin. Pet. Sci. 2023. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Jiang, S.; Fang, C.; Liu, L.; Wu, K.; Luo, Q.; Li, X.; Chen, Y. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: A case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar. Pet. Geol. 2022, 135, 105386. [Google Scholar] [CrossRef]
- Feng, X.; Peng, X.; Li, L.; Yang, X.; Wang, J.; Li, Q.; Zhang, C.; Deng, H. Influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs. Nat. Gas Ind. B 2019, 6, 7–15. [Google Scholar] [CrossRef]
- Jia, A.; He, D.; Wei, Y.; Li, Y. Predictions on natural gas development trend in China for the next fifteen years. J. Nat. Gas Geosci. 2021, 6, 67–78. [Google Scholar] [CrossRef]
- Geng, X.; Qi, M.; Liu, J.; He, C.; Li, Y. Application of principal component analysis on water flooding effect evaluation in natural edge-bottom water reservoir. J. Pet. Explor. Prod. 2021, 11, 439–449. [Google Scholar] [CrossRef]
- Muecke, T.W. Formation fines and factors controlling their movement in porous media. J. Pet. Technol. 1979, 31, 144–150. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Wang, Q.; Tan, J.; Li, B. Study on water ridge variation of horizontal wells in bottom water reservoir. J. Power Energy Eng. 2020, 8, 43–54. [Google Scholar] [CrossRef]
- You, Q.; Wen, Q.; Fang, J.; Guo, M.; Zhang, Q.; Dai, C. Experimental study on lateral flooding for enhanced oil recovery in bottom-water reservoir with high water cut. J. Pet. Sci. Eng. 2019, 174, 747–756. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Dai, Z.; Wang, J.; Chen, L.; Ling, H.; Soltanian, M.R. Radionuclide transport in multi-scale fractured rocks: A review. J. Hazard. Mater. 2022, 424 Pt C, 127550. [Google Scholar] [CrossRef]
- Dai, Z.; Ma, Z.; Zhang, X.; Chen, J.; Ershadnia, R.; Luan, X.; Soltanian, M.R. An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media. J. Hydrol. 2022, 614, 128541. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.; Zhou, W.; Zhu, G.; Pan, Y.; Fan, H.; Gao, Y.; Tang, J.; Xu, L.; You, Q. Study on water cone behavior in heavy oil reservoir with bottom water through numerical simulation. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1809–1820. [Google Scholar]
- Galkin, S.V.; Martyushev, D.A.; Osovetsky, B.M.; Kazymov, K.P.; Song, H. Evaluation of void space of complicated potentially oil-bearing carbonate formation using X-ray tomography and electron microscopy methods. Energy Rep. 2022, 8, 6245–6257. [Google Scholar] [CrossRef]
- Rashid, M.; Luo, M.; Ashraf, U.; Hussain, W.; Ali, N.; Rahman, N.; Hussain, S.; Martyushev, D.A.; Thanh, H.V.; Anees, A. Reservoir quality prediction of gas-bearing carbonate sediments in the Qadirpur field: Insights from advanced machine learning approaches of SOM and cluster analysis. Minerals 2023, 13, 29. [Google Scholar] [CrossRef]
- Yuan, H.; Li, W.; Yuan, Y.; Luo, J.; Yan, W. Productivity evaluation of horizontal well in heterogeneous reservoir with composite water aquifer. J. Pet. Explor. Prod. 2021, 11, 1363–1373. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Liu, H.; Liu, J.; Huang, W.; Zhou, P. Water invasion evaluation of Kela 2 GAS Field. J. Pet. Gas Eng. 2021, 12, 75–81. [Google Scholar]
- Jin, H. Application of fuzzy mathematical evaluation method in classification and evaluation of condensate gas reservoir. Nat. Environ. Pollut. Technol. 2019, 18, 1661–1666. [Google Scholar]
- Liu, G.; Zhou, D.; Jiang, H.; Wang, T.; Li, J. Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin, NW China. Pet. Explor. Dev. 2018, 45, 136–144. [Google Scholar] [CrossRef]
- Fetkovich, M.J. A simplified approach to water influx calculations-finite aquifer systems. J. Pet. Technol. 1971, 23, 814–828. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Liu, H.; Li, N.; Zhu, G.; Guo, P. Experimental study of the development mode of gas-cap edge-water reservoir: A case study of Khasib reservoir of Halfaya oilfield in Iraq. Pet. Explor. Dev. 2022, 49, 625–635. [Google Scholar] [CrossRef]
- Zou, C.; Guo, J.; Jia, A.; Wei, Y.; Yan, H.; Jia, C.; Tang, H. Connotations of scientific development of giant gas fields in China. Nat. Gas Ind. B 2020, 7, 533–546. [Google Scholar] [CrossRef]
- Lei, Z.X.; Mu, L.X.; Zhao, H.; Liu, J.; Chen, H.; Jia, F.; Zhou, Z. Auto-optimization of production-injection rate for reservoirs with strong natural aquifer at ultra-high water cut stage. Pet. Explor. Dev. 2019, 46, 804–809. [Google Scholar] [CrossRef]
- Prentice, R. Use of the logistic model in retrospective studies. Biometrics 1976, 32, 599–606. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Qi, Z.; Zhao, G.; Yin, B.; Mo, F. A calculation model for water breakthrough time of gas wells in gas reservoirs with edge water considering interlayer heterogeneity: A case study of the Lower Triassic Feixianguan gas reservoirs in the Puguang gas field. Nat. Gas Ind. B 2020, 7, 631–638. [Google Scholar] [CrossRef]
- Mu, L.; Chen, Y.; Xu, A.; Wang, R. Technological progress and development directions of PetroChina overseas oil and gas field production. Pet. Explor. Dev. 2020, 47, 124–133. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; Hu, Y.; Liu, X.; Wan, Y.; Luo, R.; Sun, Y.; Che, M. High-quality development of ultra-deep large gas fields in China: Challenges, strategies and proposals. Nat. Gas Ind. B 2020, 7, 505–513. [Google Scholar] [CrossRef]
- Liu, X.; Xie, N. A nonlinear grey forecasting model with double shape parameters and its application. Appl. Math. Comput. 2019, 360, 203–212. [Google Scholar] [CrossRef]
- Gallagher, B. Peak oil analyzed with a logistic function and idealized Hubbert curve. Energy Policy 2011, 39, 790–802. [Google Scholar] [CrossRef]
- Höök, M.; Li, J.; Oba, N.; Snowden, S. Descriptive and predictive growth curves in energy system analysis. Nat. Resour. Res. 2021, 20, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Höök, M.; Zittel, W.; Schindler, J.; Aleklett, K. Global coal production outlooks based on a logistic model. Fuel 2010, 89, 3546–3558. [Google Scholar] [CrossRef] [Green Version]
- Stukel, T.A. Generalized logistic models. J. Am. Stat. Assoc. 1988, 83, 426–431. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M.; Xiao, X.; Zhu, M. A novel fractional grey system model and its application. Appl. Math. Model. 2016, 40, 5063–5076. [Google Scholar] [CrossRef]
- Wang, Q.; Song, X. Forecasting China′s oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM. Energy 2019, 183, 160–171. [Google Scholar] [CrossRef]
- Cui, J.; Liu, S.-F.; Zeng, B.; Xie, N.-M. A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J. Improvement and application of GM (1, 1) model based on multivariable dynamic optimization. J. Syst. Eng. Electron. 2020, 31, 593–601. [Google Scholar]
- Chen, L.; Qi, X.; Li, Y.; Xin, H.; Liang, Z. Coupling relation between the location of cross-cut negative pressure and injecting nitrogen into coal mine goaf. ACS Omega 2021, 6, 8189–8198. [Google Scholar] [CrossRef] [PubMed]
- Reichel, L. Newton interpolation at Leja points. BIT 1990, 30, 332–346. [Google Scholar] [CrossRef]
- Werner, W. Polynomial interpolation: Lagrange versus newton. Math. Comput. 1984, 43, 205–217. [Google Scholar] [CrossRef]
- Muthumalai, R.K. Note on Newton interpolation formula. Int. J. Math. Anal. 2012, 6, 2459–2465. [Google Scholar]
- Liu, P.; Mu, Z.; Wang, W.; Liu, P.; Hao, M.; Liu, J. A new combined solution model to predict water cut in water flooding hydrocarbon reservoirs. Int. J. Hydrogen Energy 2017, 42, 18685–18690. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Li, J.; Xue, Y.; Jiang, S.; Liu, L.; Luo, Q.; Wu, K.; Zhang, N.; Feng, Y.; et al. Characteristics of source rocks and genetic origins of natural gas in deep formations, Gudian Depression, Songliao Basin, NE China. ACS Earth Space Chem. 2022, 6, 1750–1771. [Google Scholar] [CrossRef]
- Qu, M.; Liang, T.; Hou, J.; Liu, Z.; Yang, E.; Liu, X. Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery. J. Pet. Sci. Eng. 2022, 208, 109695. [Google Scholar] [CrossRef]
- Li, Y.; Tan, J.; Mou, S.; Liu, C.; Yang, D. Experimental study on waterflooding development of low-amplitude reservoir with big bottom water. J. Pet. Explor. Prod. Technol. 2021, 11, 4131–4146. [Google Scholar] [CrossRef]
- Tan, J.; Cai, H.; Li, Y.-L.; Liu, C.-Y.; Miao, F.-F. Physical simulation of residual oil displacement production in offshore strong bottom water reservoir. J. Pet. Explor. Prod. Technol. 2022, 12, 521–546. [Google Scholar] [CrossRef]
- Al-Ghanim, J.A.; Nashawi, I.S.; Malallah, A. Prediction of water influx of edge-water drive reservoirs using nonparametric optimal transformations. In North Africa Technical Conference and Exhibition; OnePetro: Cairo, Egypt, 2012. [Google Scholar]
- Li, Y.; Jia, C.; Peng, H.; Li, B.; Liu, Z.; Wang, Q. Method of water influx identification and prediction for a fractured-vuggy carbonate reservoir. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Kingdom of Bahrain, 6–9 March 2017; Paper Number SPE-183813-MS. OnePetro: Manama, Bahrain, 2017. [Google Scholar]
- Yan, W.; Yuan, Y.; Liu, J.; Qi, Z.; Li, J.; Xiao, Q. A new model predicting water breakthrough time in bottom-water drive gas reservoir based on capillary pressure and Buckley-Leverett equation. Spec. Top. Rev. Porous Media Int. J. 2019, 10, 475–484. [Google Scholar] [CrossRef]
Year | Cumulative Water Invasion (104 m3) | Year | Cumulative Water Invasion (104 m3) |
---|---|---|---|
2010 | 35.13 | 2016 | 101.52 |
2011 | 39.70 | 2017 | 117.06 |
2012 | 48.19 | 2018 | 141.07 |
2013 | 61.46 | 2019 | 146.72 |
2014 | 70.65 | 2020 | 147.76 |
2015 | 86.47 | 2021 | 165.95 |
Years | Logistic Model | GM (1,1) | Improve GM (1,1) | |||
---|---|---|---|---|---|---|
Predicted (104 m3) | Error (%) | Predicted (104 m3) | Error (%) | Predicted (104 m3) | Error (%) | |
2010 | 33.60 | 4.36 | 35.13 | 0.00 | 35.13 | 0.00 |
2011 | 42.42 | 6.86 | 45.44 | 14.47 | 43.66 | 9.98 |
2012 | 50.35 | 4.47 | 56.05 | 16.30 | 52.81 | 9.58 |
2013 | 57.43 | 6.56 | 66.96 | 8.94 | 62.62 | 1.88 |
2014 | 67.69 | 4.19 | 78.17 | 10.65 | 73.14 | 3.52 |
2015 | 79.10 | 8.52 | 89.71 | 3.75 | 84.42 | 2.37 |
2016 | 91.56 | 9.81 | 101.58 | 0.06 | 96.53 | 4.92 |
2017 | 104.88 | 10.40 | 113.79 | 2.79 | 109.51 | 6.45 |
2018 | 118.84 | 15.76 | 126.35 | 10.44 | 123.43 | 12.51 |
2019 | 133.14 | 9.26 | 139.26 | 5.08 | 138.36 | 5.70 |
2020 | 150.46 | 1.83 | 152.55 | 3.24 | 154.38 | 4.48 |
2021 | 165.47 | 0.30 | 166.21 | 0.15 | 171.55 | 3.37 |
Years | Well A (Sufficient Natural Energy) | Well B (Insufficient Natural Energy) | ||||
---|---|---|---|---|---|---|
Original | GM Model | Logistic Model | Original | GM Model | Logistic Model | |
2010 | 913.66 | 913.66 | 889.17 | 773.15 | 773.15 | 748.53 |
2011 | 1031.12 | 1107.64 | 1034.72 | 965.23 | 1006.87 | 942.36 |
2012 | 1263.30 | 1314.62 | 1200.35 | 1194.81 | 1224.24 | 1154.65 |
2013 | 1440.03 | 1535.47 | 1387.59 | 1450.91 | 1426.39 | 1377.57 |
2014 | 1691.81 | 1771.13 | 1597.69 | 1605.56 | 1614.40 | 1601.50 |
2015 | 1941.96 | 2022.59 | 1831.45 | 1780.79 | 1789.25 | 1816.67 |
2016 | 2228.65 | 2290.90 | 2089.11 | 1949.62 | 1951.87 | 2014.77 |
2017 | 2568.99 | 2577.20 | 2370.22 | 2120.46 | 2103.10 | 2190.11 |
2018 | 2907.24 | 2882.69 | 2673.48 | 2295.49 | 2243.76 | 2339.95 |
2019 | 3215.33 | 3208.65 | 2996.70 | 2419.32 | 2374.57 | 2464.24 |
2020 | 3667.26 | 3556.47 | 3336.77 | 2533.76 | 2496.23 | 2564.788 |
2021 | 3907.79 | 3927.60 | 3689.74 | 2604.19 | 2609.38 | 2644.50 |
Logistic Model | GM (1,1) | Improved GM (1,1) | |
---|---|---|---|
Average relative error (%) | 6.86 | 6.32 | 5.40 |
Years | Well A (Average Relative Error (%)) | Well B (Average Relative Error (%)) | ||
---|---|---|---|---|
GM Model | Logistic Model | GM Model | Logistic Model | |
2010 | 0.00 | 2.68 | 0.00 | 3.18 |
2011 | 7.42 | 0.35 | 4.31 | 2.37 |
2012 | 4.06 | 4.98 | 2.46 | 3.36 |
2013 | 6.63 | 3.64 | 1.69 | 5.05 |
2014 | 4.69 | 5.56 | 0.55 | 0.25 |
2015 | 4.15 | 5.69 | 0.47 | 2.02 |
2016 | 2.79 | 6.26 | 0.11 | 3.34 |
2017 | 0.32 | 7.74 | 0.82 | 3.28 |
2018 | 0.84 | 8.04 | 2.25 | 1.94 |
2019 | 0.21 | 6.80 | 1.85 | 1.86 |
2020 | 3.02 | 9.01 | 1.48 | 1.22 |
2021 | 0.51 | 5.58 | 0.20 | 1.55 |
Average | 2.89 | 5.53 | 1.35 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, B.; Liu, X.; Wu, C.; Pei, S.; Chen, Y.; Xiu, J. Water Invasion Prediction Method for Edge–Bottom Water Reservoirs: A Case Study in an Oilfield in Xinjiang, China. Processes 2023, 11, 919. https://doi.org/10.3390/pr11030919
Ma Y, Liu B, Liu X, Wu C, Pei S, Chen Y, Xiu J. Water Invasion Prediction Method for Edge–Bottom Water Reservoirs: A Case Study in an Oilfield in Xinjiang, China. Processes. 2023; 11(3):919. https://doi.org/10.3390/pr11030919
Chicago/Turabian StyleMa, Yanqing, Baolei Liu, Xiaoli Liu, Congwen Wu, Shuai Pei, Yukun Chen, and Jianglong Xiu. 2023. "Water Invasion Prediction Method for Edge–Bottom Water Reservoirs: A Case Study in an Oilfield in Xinjiang, China" Processes 11, no. 3: 919. https://doi.org/10.3390/pr11030919
APA StyleMa, Y., Liu, B., Liu, X., Wu, C., Pei, S., Chen, Y., & Xiu, J. (2023). Water Invasion Prediction Method for Edge–Bottom Water Reservoirs: A Case Study in an Oilfield in Xinjiang, China. Processes, 11(3), 919. https://doi.org/10.3390/pr11030919